

1 Introduction

The TBMA1C is a small, lightweight, wideband biconical measurement antenna. With its moderate price, it is targeting radiated emission EMC pre-compliance testing and generating defined field strengths. It is characterized from 20 MHz to 1 GHz and has a directional pattern similar to a dipole.

2 Product overview

The TBMA1C comes in an aluminum carrying case. A standard 1/4" thread makes it easy to connect it to most standard tripods.

The elements are corrosion resistant and constructively locked against rotation. They are fed via a wideband balun with 2 W power handling capability. Furthermore they are protected against build-up of static charge.

1

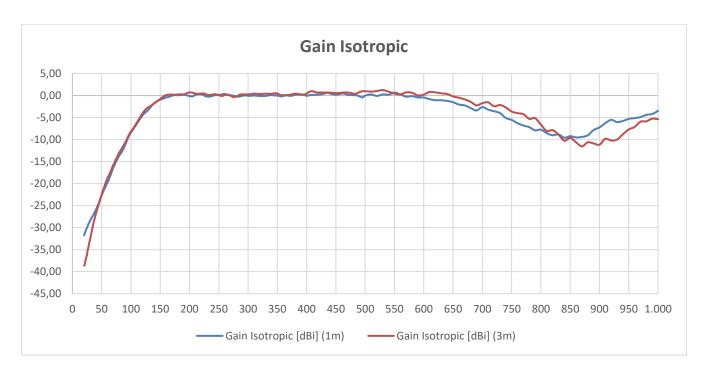
3 Technical specifications

Туре	Passive biconical
Frequency range (Optimized)	20 MHz- 700 MHz
Frequency range (Characterized)	20 MHz- 1000 MHz
VSWR	<2.66 (f > 200 MHz)
Isotropic gain at 3m spacing	-38.64 1.26 dBi
Antenna factor at 3m spacing	14.19 40.56 dB/m
Maximum continuous input RF power	2W
Nominal impedance	50 Ω
RF Connector	N type female
Matching	1:2 transformer + 1:1 balun
Tripod Adapter Thread Size	1/4 "
Antenna dimensions	L x W x H: 605 mm x 235 mm x 203 mm (23.80" x 9.26" x 8.00")
Antenna weight	0.58 kg (1.28 lbs)
Carrying case dimensions	L x W x H: 630 mm x 310 mm x 270 mm (24.80" x 12.2" x 10.6")
Carrying case weight	4.4 kg (9.7 lbs)

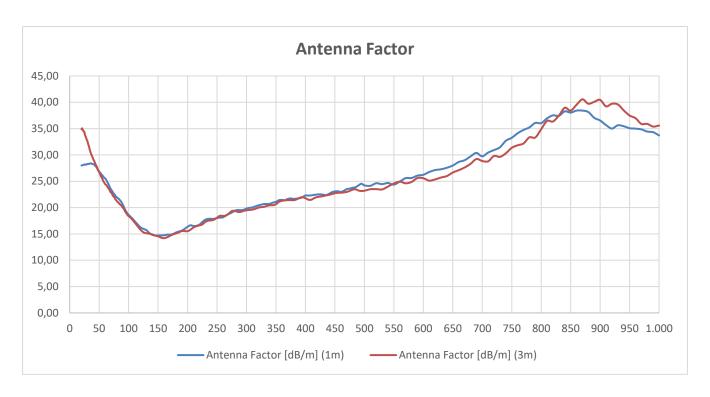
4 TBMA1C Antenna characterization

The TBMA1C has been characterized using standard calibration techniques and the results are documented in the tables further down.

The distance in the gain and antenna factor table refers to the center of the antenna.

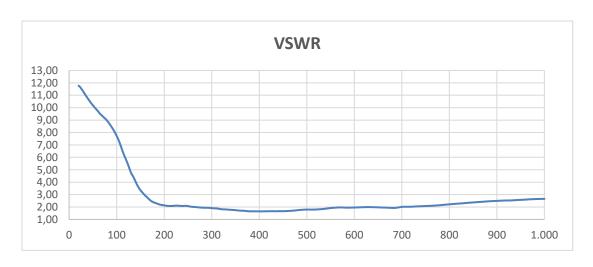

4.1 Gain & Antenna Factor versus frequency

Frequency	Isotropic Gain 1m	AF 1m	Isotropic Gain 3m	AF 3m
MHz	dBi	dB/m	dBi	dB/m
20	-31.75	27.99	-38.64	34.88
25	-30.00	28.18	-36.17	34.35
30	-28.53	28.29	-32.89	32.65
35	-27.28	28.38	-29.56	30.66
40	-26.00	28.26	-26.91	29.17
45	-24.44	27.73	-24.67	27.96
50	-22.68	26.88	-22.54	26.73
55	-21.15	26.18	-20.53	25.55
60	-19.77	25.55	-18.72	24.50
65	-18.15	24.62	-17.26	23.74
70	-16.34	23.46	-15.74	22.86
75	-14.90	22.62	-14.32	22.04
80	-13.67	21.96	-12.97	21.25
85	-12.62	21.43	-11.83	20.64
90	-11.25	20.56	-10.70	20.00
95	-9.62	19.39	-9.31	19.09
100	-8.40	18.62	-8.17	18.39
105	-7.41	18.06	-7.23	17.87
110	-6.41	17.46	-6.15	17.20
115	-5.40	16.83	-5.06	16.50
120	-4.46	16.27	-4.01	15.81
125	-3.79	15.95	-3.15	15.31
130	-3.23	15.72	-2.63	15.13
135	-2.35	15.18	-2.22	15.05
140	-1.69	14.83	-1.77	14.92
145	-1.25	14.70	-1.23	14.68
150	-0.96	14.70	-0.81	14.55
155	-0.69	14.71	-0.27	14.30
160	-0.44	14.74	0.11	14.19
165	-0.28	14.85	0.22	14.35
170	-0.04	14.87	0.20	14.63
175	0.12	14.96	0.19	14.89


Frequency	Isotropic Gain 1m	AF 1m	Isotropic Gain 3m	AF 3m
MHz	dBi	dB/m	dBi	dB/m
180	0.07	15.25	0.24	15.08
185	0.12	15.44	0.28	15.28
190	0.18	15.62	0.25	15.55
200	-0.11	16.35	0.72	15.52
210	0.16	16.50	0.44	16.22
220	0.32	16.75	0.45	16.62
230	-0.24	17.69	0.18	17.27
240	-0.04	17.87	0.26	17.57
250	0.15	18.03	0.09	18.09
260	0.37	18.15	0.10	18.42
270	0.06	18.79	-0.04	18.88
280	-0.20	19.37	-0.22	19.38
290	-0.04	19.51	0.28	19.18
300	-0.05	19.81	0.27	19.49
325	-0.10	20.56	0.37	20.09
350	0.02	21.08	0.46	20.64
375	-0.04	21.74	0.27	21.43
400	-0.05	22.31	0.46	21.80
425	0.27	22.52	0.70	22.09
450	0.21	23.08	0.56	22.73
475	0.16	23.60	0.59	23.16
500	-0.02	24.22	1.00	23.20
550	0.67	24.36	0.45	24.57
600	-0.45	26.23	0.20	25.58
650	-1.51	27.99	-0.18	26.66
700	-2.61	29.74	-1.72	28.85
750	-5.53	33.25	-3.63	31.35
800	-7.75	36.03	-6.61	34.89
850	-9.23	38.04	-9.61	38.42
900	-7.23	36.53	-11.15	40.46
950	-5.30	35.07	-7.71	37.48
1000	-3.48	33.70	-5.36	35.58

20 MHz ... 1000 MHz, Isotropic Gain of TBMA1C

20 MHz ... 1000 MHz, Antenna Factor of TBMA1C



4.2 TBMA1C Return Loss / VSWR

TBMA1C, S11, 20 MHz ... 1000 MHz

TBMA1C, VSWR, 20 MHz \dots 1000 MHz

Detailed test reports from Seibersdorf Laboratories can be downloaded from our website.

Symmetry: At frequencies below 60 MHz, the TBMA1C becomes slightly asymmetric. This is not relevant in horizontal orientation. When using the antenna in vertical orientation, position the antenna so that the engraved text on the housing is oriented reversed / upside down.

5 Application

The TBMA1C was designed, targeting radiated noise EMC pre-compliance measurements.

To make optimum use of the TBMA1C, a few details need to be considered:

High amplitude signals that appear at the RF output, especially when employing external pre-amplifiers might overdrive the spectrum analyzer and the resulting intermodulation will cause measurement errors. In environments with high ambient noise levels, using suitable filters may be of advantage.

The ambient noise level picked up by the antenna in an unshielded environment may exceed the radiated emission limits of certain CISPR standards, even with no EUT present. Consequently, it may be very difficult to differentiate ambient noise and radiated noise from the EUT in an unshielded environment.

Even turning ON/OFF the EUT to identify the radiated noise from the EUT may often not be a solution, given the dynamic characteristics of ambient noise sources.

A suitable procedure is first measuring the radiated noise of the EUT in a TEM cell which is placed in a shielded tent or shielded bag. This will give an excellent overview of the emitted noise spectrum of the EUT. You can easily identify the strongest emissions of the EUT and thereafter re-measure it in an open area test site (OATS) with the measurement antenna. You then don't need to confuse yourself with the entire ambient spectrum. Simply set the center frequency of the analyzer to the critical emission frequencies of the EUT, one by one. Choose a span as narrow as possible to zoom only at the frequency of the investigated EUT spurious. In case that the base noise is still too high, you can use suitable external bandpass filters, reduce the resolution bandwidth of the analyzer or move the antenna closer to the EUT until you can clearly identify the EUT spurious and measure its level. As long as you keep your antenna in the far field, you can easily convert from the actual measurement distance to the equivalent level in 3m or 10m distance.

In case that the EUT spurious exceed the limit of the standard, take it back to your lab and use near field probes to locate the origin of the spurious on your EUT PCBA. Take suitable measures to reduce the emissions of your product. Track the effect of the modifications by TEM cell measurements, until the relative improvement measured in the TEM cell matches the relative improvement required to meet the far field limits according to the relevant standard.

Then carry out another OATS measurement of the EUT to validate, if the EUT's radiated emissions are within the limits when measured with an antenna.

Use following formula to convert the measurement result from the actual measurement distance to the distance specified in the relevant standard:

$$P_s = P_m + 20log \frac{D_m}{D_s} \text{ [dBm]}$$

Where D_m is the actual measurement distance and D_s is the specified distance in the relevant standard.

 P_m is the RF power measured in the actual measurement distance.

 $P_{\rm s}$ represents the calculated equivalent RF power in the distance specified in the relevant standard.

Alternatively use the conversion table below:

Conversion 1 m to 3 m	subtract 9.5 dB
Conversion 1 m to 10 m	subtract 20 dB
Conversion 2 m to 3 m	subtract 3.5 dB
Conversion 2 m to 10 m	subtract 14 dB
Conversion 3 m to 10 m	subtract 10.5 dB

However, when applying the conversions above, be aware, that even in the set up specified in the standards, the measurement antenna is not always in the far field across the entire frequency range. This would physically be impossible, given the size limitations of anechoic chambers.

6 Ordering Information

Part Number	Description
TBMA1C	20 MHz – 1 GHz biconical measurement antenna, aluminum carrying case
TBTP3	TBTP3 wooden tripod as a mounting option

7 History

Version	Date	Author	Changes
V1.0	12.10.2025	Mayerhofer	Creation of the document

www.tekbox.com

Factory 4, F4, Lot I-3B-1, Saigon Hi-Tech Park, Tan Phu Ward, District 9, Ho Chi Minh City, Vietnam

