

ELECTRICAL SAFETY TESTERS

安全関連試験器カタログ

耐電圧・絶縁抵抗試験器/耐電圧試験器/絶縁抵抗計/部分放電試験器/アース導通試験器/漏洩電流試験器/リーケージカレントテスタ

TOS SERIES

安全関連試験機器【TOS

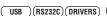
ELECTRICAL SAFETY TESTER

耐電圧・絶縁抵抗・アース導通・漏洩電流・部分放電の各試験にマルチ対応するオールラウンドプレーヤー


TOS9301

ACW 5kV/100mA (500VA)

T0S9300


AC耐電圧·絶縁抵抗試験器

0.001MΩ~100.0GΩ(DC-25V~-1000V)

D 430(440)W×132(150)H×370(410)Dmm W 約17kg 標準価格: ¥490,000 (税込¥539,000)

C € ĽK

 $0.001M\Omega \sim 100.0G\Omega(DC-25V\sim -1000V/DC+50V\sim +7200V)$

LAN USB (RS232C) (DRIVERS) (Timer)

D 430(440)W×132(150)H×370(410)Dmm W 約18kg 標準価格: ¥550,000 (税込¥605,000)

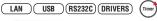
AC/DC耐電圧·絶縁抵抗試験器

5kV/20mA,7.2kV/13.9mA (100W)

P.4~25

TOS9301PD

AC/DC耐電圧·絶縁抵抗·部分放電試験器


ACW 5kV/100mA (500VA)

5kV/20mA,7.2kV/13.9mA (100W)

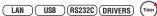
 $0.001M\Omega \sim 100.0G\Omega(DC-25V\sim -1000V/DC+50V\sim +7200V)$

5kV/50mA (250VA)

D 430 (440) W × 132 (150) H × 525 (565) Dmm 標準価格:¥1,200,000 (税込¥1,320,000)

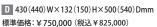
W 約22kg

TOS9302


AC耐電圧・アース導通試験器

ACW 5kV/100mA (500VA)

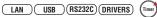
 $0.001\Omega \sim 0.600\Omega (3.0A \sim 42.0A)$



D 430(440)W×132(150)H×500(540)Dmm W 約20kg 標準価格:¥630,000(税込¥693,000)

T0S9303

P.4~25 AC/DC耐電圧・絶縁抵抗・アース導通試験器


ACW 5kV/100mA (500VA)

5kV/20mA,7.2kV/13.9mA (100W)

 $0.001M\Omega \sim 100.0G\Omega(DC-25V\sim -1000V/DC+50V\sim +7200V)$

 $0.001\Omega \sim 0.600\Omega (3.0A \sim 42.0A)$

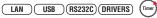
D 430(440)W×132(150)H×500(540)Dmm W 約21kg

TOS9303LC

P.4~25

AC/DC耐電圧・絶縁抵抗・ -ス導通・漏洩電流試験器

5kV/100mA (500VA)


5kV/20mA,7.2kV/13.9mA (100W)

 $0.001M\Omega \sim 100.0G\Omega(DC-25V\sim -1000V/DC+50V\sim +7200V)$

 $0.001\Omega \sim 0.600\Omega (3.0A \sim 42.0A)$

1μA~100mA (rms)

D 430(440)W×132(150)H×500(550)Dmm W 約22kg 標準価格: ¥1,050,000 (税込¥1,155,000)

T0S9320

高電圧スキャナ

TOS9300 シリーズを多チャンネル試験システムに拡張

D 430 (440) W×88 (105) H×370 (390) Dmm 標準価格: ¥290,000 (税込¥319,000)

W 約8kg

その他

リモートコントロールボックス テストプローブ テストリード 警告灯ユニット 高電圧デジタルボルトメータ UL 用負荷抵抗器

P.48~50

グローバルに使える耐電圧・絶縁抵抗試験のスタンダードモデル

T0S5302

P.26~31

AC耐電圧・絶縁抵抗試験器

ACW 5kV/100mA (500VA) IR 0.03MΩ~5GΩ(DC-25V~-1000V)

標準価格:¥310,000(税込¥341,000)

TOS5301

AC/DC耐電圧試験器

ACW 5kV/100mA (500VA) 6kV/10mA (50W)

D 320(330)W×132(150)H×350(420)Dmm 標準価格: ¥270,000 (税込¥297,000)

T0S5300

P.26~31

AC耐電圧試験器

ACW 5kV/100mA (500VA)

W 約14kg

D 320(330)W×132(150)H×350(420)Dmm 標準価格:¥220,000(稅込¥242,000)

※"Fall Time" は 0.1秒(S)か、OFFの選択となります。

シリーズ】 ラインアップ

信頼と実績が築くデファクト・スタンダード

TOS5200

P.32~36

AC耐電圧試験器

ACW 5kV/100mA (500VA)

C € ½ W 約14ka

D 320 (330) W×132 (150) H×350 (420) Dmm 標準価格:¥168,000 (税込¥184,800)

※"Fall Time" は 0.1秒(S)か、OFFの選択となります。

リーズナブルで高性能

TOS7200

絶縁抵抗試験器

IR 0.01MΩ~5000MΩ(DC-25V~-1000V)

D 215W×66 (85) H×230 (260) Dmm 標準価格: ¥110,000 (税込¥121,000) W 約2kg

最大60Aまで規格試験に対応した試験器

TOS6210

P.40~42

アース導通試験器

EC 0.001Ω~0.600Ω (6A~62A)

D 430 (455) W×88 (140) H×270 (350) Dmm 標準価格: ¥380,000 (税込¥418,000)

W 約11kg

最大30Aまでの規格試験に対応した試験器

TOS6200A

P.43,44

GPIB RS232C (Timer

アース導通試験器

D 430 (455) W×88 (140) H×270 (345) Dmm 標準価格: ¥250,000 (稅込¥275,000)

W 約9kg

C € ĽK

接触電流および保護導体電流の各試験に対応

TOS3200

P.45~47

リーケージカレントテスタ

LC 30 μ A~30mA (rms)

D 320 (345) W×88 (105) H×270 (330) Dmm 標準価格: ¥260,000 (稅込¥286,000)

W 約5kg

機能マーク表示説明

ACW AC 耐電圧試験最大印加電圧

DC 耐電圧試験最大印加電圧 絶縁抵抗試験測定範囲

アース導通試験測定範囲

漏洩電流試験測定範囲 部分放雷試験測定範囲

ライズタイムコントロール機能装備

フォールタイムコントロール機能装備

本体外形寸法 W

質量

LAN インターフェース標準装備

USB インターフェース標準装備

(RS232C) RS232C インターフェース標準装備

Timer

製造された電子機器、電子部品等が安全に使用できる様に様々な機関が安全規格を発行し、使用される国ごとに規格や試験項目が異なります。日本では電気用品安全法 (平成 13 年 4 月)、日本工業 規格が発行されています。海外では国際電気標準会議にて発行されている IEC 規格を中心に、EN 規格、BS 規格、VDE 規格、UL 規格、CSA 規格等各国の発行団体が安全規格を作成しています。適用 する安全規格の試験項目を御確認の上、耐電圧試験器、絶縁抵抗試験器、アース導通試験器、リーケージカレントテスタをお選び下さい。TOSシリーズでは様々な規格、試験項目に対応する為に単機 能の試験器から、自動システムまで幅広い製品機種を用意しています。

通電されている電気機器、および充電されたバッテリーへの耐電圧・絶縁抵抗試験について

耐電圧・絶縁抵抗試験器 TOS シリーズは被試験物が通電、またはエネルギーの蓄えられていない状態での試験を想定しております。 通電して動作している状態での試験、またはエネルギーの蓄えられたバッテリー等の試験については当社営業までお問い合わせください。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

各試験にマルチ対応するオールラウンドプレーヤ

▲ TOS9303LC

▲ TOS9303LC

LAN USB RS232C DRIVERS (CA

AC耐電圧·絶縁抵抗試験器

TOS9300 ----------------------------------標準価格¥490,000

AC/DC耐電圧·絶縁抵抗試験器

(税込¥605,000)

AC/DC耐電圧·絶縁抵抗·部分放電試験器

(税込¥1,320,000)

AC耐電圧・アース導通試験器

祝込 ¥693,000

AC/DC耐電圧・絶縁抵抗・アース導通試験器

TOS9303 ----------------------------------標準価格¥750,000

(税込¥825,000)

AC/DC耐電圧・絶縁抵抗・アース導通・漏洩電流試験器

(税込¥1,155,000)

●価格/対応試験早見表

一	映干兄衣							
	標準	価格			対応試	験項目		
形名	税抜	税込	AC 耐電圧	DC 耐電圧	(二) (元) (絶縁抵抗	<u>い</u> こ アース導通	坐 № 18	部分放電
T0S9300	¥490,000	¥539,000	•		•			
T0S9301	¥550,000	¥605,000	•	•	•			
TOS9301PD	¥1,200,000	¥1,320,000	•	•	•			•
T0S9302	¥630,000	¥693,000	•			•		
T0S9303	¥750,000	¥825,000	•	•	•	•		
T0S9303LC	¥1,050,000	¥1,155,000	•	•	•	•	•	
T0S9320	¥290,000	¥319,000	4ch 高	電圧スキャナ、技	- 接触確認機能付き	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	からの出力を分配	 門能

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

TOS9300シリーズは、電子機器/電子部品に対して数種類の安全試験をすることができる電気安全規格試験マルチアナライザです。安全試験の種類には、耐電圧試験、絶縁抵抗試験、アース導通試験、漏れ電流試験(接触電流試験、保護導体電流試験、患者漏れ電流試験)、部分放電試験があります。必要な試験の組み合わせに応じて機種構成されているので、1台で無駄なく様々な安全試験に対応できます。研究開発設備、品質保証試験や規格認証機関の試験設備、生産ラインの設備に適しています。

- オールインワンモデル登場(TOS9303LC)
- 部分放電機能付きモデルで絶縁診断可能(TOS9301PD)
- 新開発アンプで最大 40A の AC/DC 双方のアース導通試験が可能 (アース導通試験搭載機種)
- 絶縁破壊の検出感度を設定可能
- AC5kV/100mA、DC7.2kV/100W の耐電圧試験機能
- 接触電流 / 保護導体電流 / 患者漏れ電流試験が可能 (TOS9303LC)
- LAN/USB/RS232C 標準装備
- 視認性の高いカラー液晶ディスプレイ採用、各試験における測定値や規格概要などを表示
- 高電圧スキャナは、単体で試験器からの出力を分配可能。当社従来モデル 耐電圧 / 絶縁抵抗試験器 [TOS5300 シリーズ等] との接続も可能 (TOS9320)

基本性能

カラー液晶ディスプレイ採用でスタイル一新!

7インチディスプレイに各試験設定値や概要、図面表示することで視認性はもちろん、わかりやすい操作を実現しています。 (製品外観 P4 参照)

10KEYの配置による操作性の向上

ロータリーノブスイッチに加えて、10KEY を新たに装備。設定値をダイレクト入力で設定可能。さらに前面パネルの USB コネクタにキーボードを接続すると、キーボード*から数字/文字を入力することが出来ます。

* 使用可能なキーボードのタイプは、106 または 109 日本語キーボード、および 101 または 104 英語キーボード

USBでファームアップが可能

本製品のファームウェアは、お手持ちのUSBメモリを使用して簡単にアップデート出来ます。アップデートファイルは、当社ウェブサイト (https://kikusui.co.jp/download/) よりダウンロードが可能です。

I/Vモニタ端子(アナログモニタ)

後面パネルのI/V端子から出力される信号により、カレントセンサや高電圧プローブを使用せずに、耐電圧試験中の電流波形/電圧波形をオシロスコープで確認することが出来ます。

BNC ケーブルでオシロに接続可 ※ BNC ケーブルはオプション で用意しておりません。別途 ユーザ様でご用意ください。

ワールドワイド対応

●グローバルに使用可能!

入力電源を変更することなく海外工場でも そのまま使用可能。

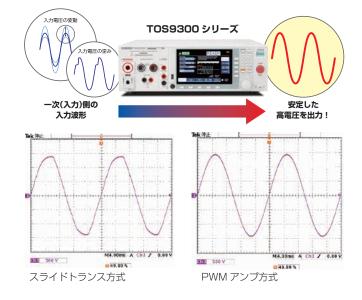
●出力周波数選択可能!

入力側の電源環境に依存しません。 周波数 50Hz/60Hz の安定した試験電圧を供給。

部分放電の試験に対応 (TOS9301PD)

微細な部分放電を観測することで耐電圧試験ではわからない絶縁物内部の劣化や寿命に影響する "潜在的不良"を発見することができます。(アブリケーション P9、仕様 P16 参照)

STATUS OUTコネクタ


後面パネルの STATUS コネクタから、オプションの警告灯ユニット(PL02A-TOS)への信号が出力されます。高電圧出力中や試験 NG の状態を警告灯等を接続して駆動させることが可能です。

高精度・高分解能・高速判定を実現

電圧計は \pm (1.2% of reading +5 V)/最小分解能0.1 V、電流計は \pm (1% of reading +2 μ A)/最小分解能1 μ A と高確度・高分解能の True RMS 計測回路を搭載しています。また、オートレンジ機能を搭載し、下限判定確度も上限判定確度と同等の性能を実現したため、テストリードの未接続や接触不良などが有効に検出できるようになりました。さらに試験時間 0.1 秒の高速判定を実現。高精度・高分解能・高速計測・判定機能で確実な試験を行うことが出来ます。

安定したAC耐電圧試験を実現![入力電圧変動率±0.3%]

一般的な耐電圧試験器は、AC ラインの入力電圧に対してスライドトランスを使い昇圧して出力しています。このスライドトランス方式では入力電圧の変動が出力に影響するため、正しく試験できないことがあります。歪んだ電圧を被試験物に印加する事は新品不良の原因を作ってしまう(部品劣化の加速)場合もあるのです。TOS9300シリーズは高効率 PWM アンプを内蔵しており、AC ラインの変動に影響を受けない安定した高電圧を出力できますので、電圧変動の大きい地域でも『安心』して、『安定』した信頼性の高い『安全』な試験が可能です。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

基本性能

自動試験が可能

あらかじめ設定した試験を組み合わせて連続的に実行することが可能です。自動試験は、プログラムとステップで構成されます。 プログラムはステップの集合体です。1 ステップごとに1 つの試験が設定でき、ステップ1 から1 つずつ昇順に実行されます。 最後のステップが終了すると、プログラムが終了します。

●プログラムの概略図

ステップ1	ステ	ップ2	ステップ3		
ACW試験	DCV	/試験	IR試験		
	プロ・	I グラム			
	最大プログラム数 最大ステップ数*			プログラム名の変更	
プログラムメモリー (LC 試験以外)	100	100	×	0	
プログラムメモリー (LC 試験のみ) *2	100	100	×	0	
	最大プログラム数	最大ステップ数 *1	外部コントロールで実行	プログラム名の変更	
外部コントロール用プログラム メモリー(LC 試験以外)	25	100	0	×	
外部コントロール用プログラム メモリー(LC 試験のみ)*2	24	100	0	×	

^{*1 1}プログラムあたり *2 TOS9303LCのみ

接触/保護導体/患者漏れ電流の試験に対応(TOS9303LC)

一般電気機器に加え、医療機器の各種漏れ電流試験 (Patient Current) にも対応します。さらにネットワーク (試験で使用する測定回路網)も容易に設定可能です。(アプリケーションP8、仕様P19参照)

電気安全規格試験が1台で可能 (TOS9303LC)

AC/DC 耐電圧試験、絶縁抵抗試験、AC/DC アース導通試験、漏れ電流試験のすべての機能を搭載した TOS9303LC では、1 台で電気安全規格への適合性試験が可能。接触電流、保護導体電流、患者漏れ電流の試験にも対応。

電流検出の応答速度 (Filter)

耐電圧試験器は、絶縁破壊したか否かを判定する試験の為、基本的には部分放電のような瞬間的な放電電流については、合否判定には含まれません。しかし、絶縁破壊の前兆を知りたいというニーズにお応えするため、TOS9300シリーズでは、5段階の応答速度(感度)の設定が可能です。従来の耐電圧試験では検出できなかった小さな放電も検出可能となります。

設定値		説明
LPF	Slow	平均値応答型の電流検出で、当社の汎用 AC 耐電圧試験器の電流検出 応答と同等です。安全規格で定義されている絶縁破壊の検出に適し た設定で、一般の電子機器、電子部品などの耐電圧試験に使用します。 一般の安全規格では絶縁破壊とみなされないコロナ放電などは検出 しにくい設定です。
	Medium	ピーク検出に近い平均値応答型の電流検出で、Slow より応答が速い
	Fast	設定です。上限判定の検出速度が速いため、小型電子部品などの絶縁 破壊しやすい EUT の耐電圧試験に適しています。コロナ放電のよう な瞬間的に生じる放電、周波数成分の高い放電でも検出されることが あるため、再現性のある耐電圧試験には向かない場合があります。
	Slow	コロナ放電などの非常に小さい放電を検出しますが、再現性は低く
HPF	Fast	なります。

メモリー機能で簡単設定

自動試験のプログラム機能による組み合わせ試験のメモリとは別に、任意で設定した試験条件と選択されている試験モードの種類を本体メモリや USB メモリ に 51 個まで保存できます。試験開始を手間なくスムーズに実行できます。

正極・負極 絶縁抵抗試験

試験電圧は、 $-25 \, \text{V} \sim -1000 \, \text{V}$ 、 $+50 \, \text{V} \sim +7200 \, \text{V}$ 、設定分解能 $1 \, \text{V}$ で、 $99.99 \, \text{G}$ Ω までの絶縁抵抗試験が可能です。IEC61730-2 規格等の PV(太陽電池)モジュールの絶縁抵抗試験にも容易に 対応。 $(\text{アプリケーション P9} \, \text{参照})$

放電機能 (ディスチャージ回路を搭載)

DC 耐電圧試験、絶縁抵抗試験では試験終了時、被試験物に充電されている電荷を強制的に放電するディスチャージ機能を搭載しています。放電時間の設定範囲は、 $0.0 \, \mathrm{s} \sim 100.0 \, \mathrm{s}$ です。

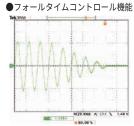
最大40A AC/DCのアース導通試験に対応

新開発のアンプにより、一般家電製品の AC アース導通試験から EV/PHV システムの DC アース導通試験まで幅広く対応します。 今後、増加が推測される車載関連の DC 規格要求に柔軟に対応 可能です。

EARTH FAULT保護機能

接地方式(GND)の設定が Guard (フローティング) の場合に、誤って被試験物等を接地してしまうと、本製品の高電圧出力部から接地部に異常な電流が流れ、操作者が感電する恐れがあります。 EARTH FUALT 保護機能が作動した場合、即時に出力が遮断されて試験が停止しますので、操作者の感電を防ぐことが可能です。

オフセットキャンセル機能


出力ケーブル間などの絶縁抵抗、ストレー容量成分に流れる電流をそれぞれキャンセルすることが出来ます(DC 試験は抵抗成分のみ)。AC 耐電圧試験、DC 耐電圧試験、絶縁抵抗試験、アース導通試験、漏洩電流試験の全試験モードで可能です。

ライズタイム/フォールタイムコントロール機能

印加電圧を時間制御し、被試験物に必要以上のストレスをかけ てしまう事を防ぎます。

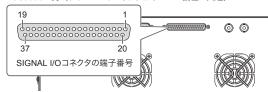
●ライズタイムコントロール機能 Pack Map A Chi Z 149V

AC / DC 耐電圧試験では設定電圧まで徐々に電圧を上昇させるライズタイムコントロール機能を搭載。電圧上昇時間は 0.1 s ~ 200.0 s まで 0.1s 分解能で設定可能です。

AC / DC 耐電圧試験の PASS 判定時には、徐々に試験電圧を降下させることができます。電圧降下時間は 0 s ~ 200 s まで 0.1s 分解能で設定可能 (OFFも可)です。

7.2kV/100WのDC耐電圧試験

TOS9300 シリーズは 7.2 kV までの DC 耐電圧試験が可能です。低リップルで負荷変動率 1% 以下の安定な DC/DC コンバータを搭載しています。


WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

インターフェース

SIGNAL I/Oコネクタ

リアパネルには、スタート/ストップの操作や信号出力を備え た SIGNAL I/O を搭載しています。

TOS9300の例 (SIGNAL I/Oコネクタはすべての機種で共通)

	II.		, - ,
端子番号	入出力	信号名	説明
1	IN	INTERLOCK+	インターロックの作動/解除。
2	-	СОМ	入出力共通の回路コモン(シャシ電位)。
3	IN	PM0	
4	IN	PM1	
5	IN	PM2	
6	IN	PM3	
7	IN	PM4	 自動試験のプログラムメモリーを選択。
8	IN	PM5	
9	IN	PM6	
10	IN	PM7	
11	IN	STB	PMO~PM7 の信号で選択した セットアップメモリー/プログラムの呼び出し。
12	-	Reserved	
13	-	Reserved	
14	-	Reserved	
15	IN	START	試験の開始。
16	IN	STOP	試験の終了。
17	IN	ENABLE	START 信号の有効化。
18	-	COM	入出力回路の共通コモン(シャシ電位)。
19	IN	INTERLOCK-	インターロックの作動/解除。
20	-	СОМ	入出力回路の共通コモン(シャシ電位)。
21	-	+24V	+24 V 内部電源出力端子。最大出力電流 100 mA。
22	OUT	H.V ON/LINE ON	下記のいずれかの場合にオン。試験中。自動試験中。 出力端子間に電圧が残留している。 TOS9303LCで AC LINE OUT から EUT に電力を供給中。
23	OUT	RISE	電圧上昇中にオン。
24	OUT	TEST	試験時間中にオン。
25	OUT	PASS	PASS 判定時に、Pass Hold で設定した時間オン。
26	OUT	U FAIL	U-FAIL 判定時に連続でオン。またはスキャナ接続時の CONTACT FAIL 判定時に L FAIL 信号と共に連続でオン。
27	OUT	L FAIL	L-FAIL 判定時に連続でオン。またはスキャナ接続時の CONTACT FAIL 判定時に U FAIL 信号と共に連続でオン。
28	-	Reserved	未使用。
29	OUT	READY	試験が開始できる状態のときにオン。
30	OUT	PROTECTION	保護機能作動時にオン。
31	OUT	STEP END	自動試験の各ステップ終了時にオン。
32	OUT	CYCLE END	自動試験の最終ステップ終了時にオン。
33	OUT	ACW	試験モードで交流耐電圧試験を選択中にオン。
34	OUT	DCW	試験モードで直流耐電圧試験を選択中にオン。
35	OUT	IR	試験モードで絶縁抵抗試験を選択中にオン。
36	OUT	EC	試験モードでアース導通試験を選択中にオン。
37	OUT	LC	試験モードで接触電流試験または保護導通試験を 選択中にオン。

LAN(LXI)、USB、RS232Cを標準装備

LAN (LXI)、USB2.0、USB-TMC準拠のUSB、及びRS232Cインター フェースを標準装備しています。

▲リアパネル・インターフェース(全モデル共通)

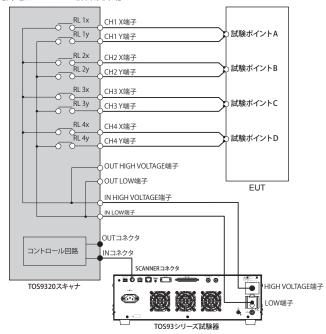
◀パソコン、スマートフォン、タブレットの WEB ブラウザから、 TOS9300 シリーズに組込まれた WEB サーバにアクセスし、 制御することができます。

● Internet Explorer 9.0 以降 ● Firefox 8.0 以降 ● Safari/Mobile Safari 5.1 以降 ● Chrome 15.0 以降 ● Opera 11.0 以降

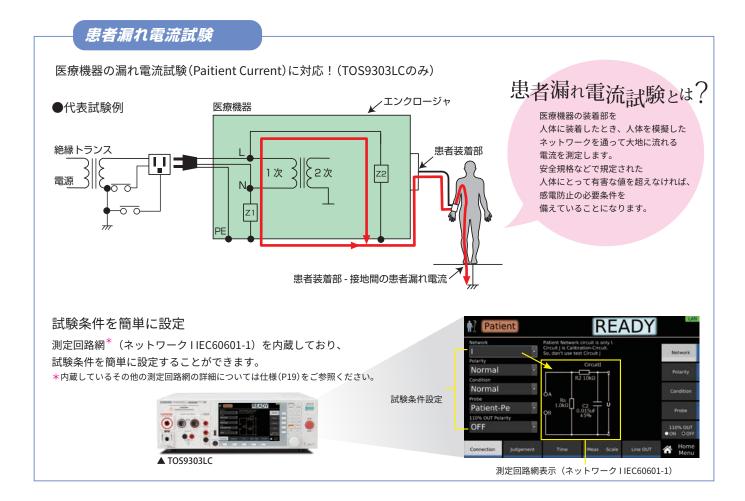
周辺機器

高電圧スキャナTOS9320

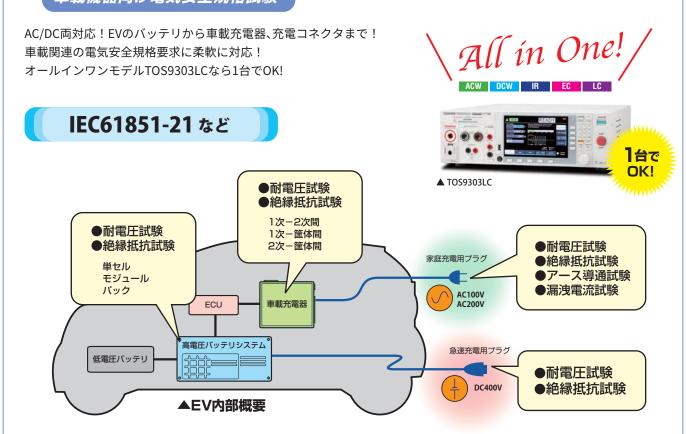
高電圧スキャナ


TOS9320 ----

--- 標準価格 ¥290.000 (税込 ¥319,000)


高電圧スキャナ TOS9320 を使用することにより、耐電圧試験お よび絶縁抵抗試験において、試験器本体から供給される試験電 圧を複数の試験ポイントに分配することができます。後面パネ ルの CONTROLLER INTERFACE コネクタを介して外部機器から チャンネルをコントロールできます。単体で試験器からの出力 を分配可能なので、外部制御機器と組み合わせることによって、 当社製耐電圧・絶縁抵抗試験器 TOS5300 シリーズなどの出力も 分配できます。複数の試験ポイントを持つ電気・電子機器、電 子部品などの試験を省力化し、信頼性の高い試験ができます。 (アプリケーション P9 参照)

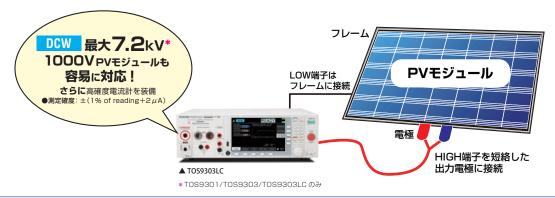
- ●1台の高電圧スキャナで、出力を4チャンネルに拡張します。各チャ ンネルは、High、Low、Openの任意の電位に設定でき、4点の試 験ポイントのうち任意の点に対して試験することができます。
- ●1台の本製品につき、高電圧スキャナを最大4台(16チャンネ ル)まで接続できます。
- ●各チャンネルの出力と試験ポイントとの間の接触をチェック できます。


【高電圧スキャナ動作概念図】

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

車載機器向け電気安全規格試験

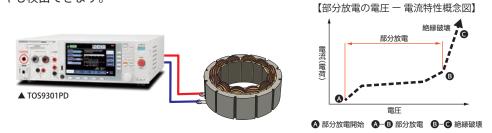
WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER


PV (太陽電池) モジュールの耐電圧・絶縁抵抗試験

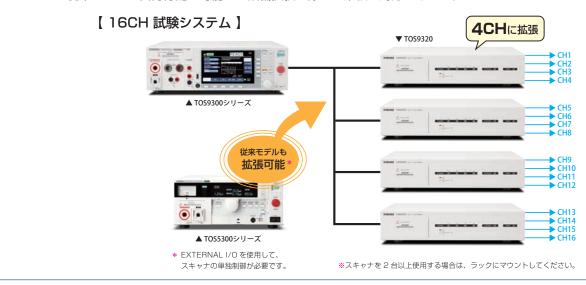
IEC61730-2およびJIS C 8992-2などの耐電圧試験では、

試験電圧を[最大システム電圧×4倍+2000V]まで上昇させた後、電圧を1分間保持させます。

【 電圧 1000V 適応等級 A の事例 】


1000V × 4倍 + 2000V= 試験電圧: 6000V

部分放電試験


【EUT(例): 小型モーター、トランス、絶縁材料など】

部分放電試験では、絶縁破壊に至る前の状態を検出するので、従来の耐圧試験では分からなかった潜在的な不良や、 製造上のバラツキも検出できます。

多チャンネル耐電圧・絶縁抵抗試験

機器や部品の試験を省力化。複数の試験ポイントを同時に試験! TOS9300シリーズの出力を多チャンネルに拡張。 さらに、従来モデルの出力分配も可能で、設備拡張の際にも柔軟に対応できます。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■ 耐電圧試験部仕様

[AC 出力機能]

項目			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
			0.050 kV ~ 5.000 k	·V						
	出力範囲	分解能	1 V							
		設定確度	± (1.2 % of setting + 0.02 kV)(無負荷時)							
	最大定格負荷 *1		500 VA (5 kV / 100 i	mA)						
	最大定格電流		100 mA(出力電圧().2 kV 以上)						
	トランス容量		500 VA							
A C 111 + 27	山中南区沙亚(*2		正弦波	正弦波						
	出力電圧波形 *2	ひずみ率	2 %以下(出力電圧 0.5 kV 以上、無負荷時または純抵抗負荷時)							
	クレストファクタ		√ 2±3%(0.8 kV 以上)							
	B. 本业			50 Hz / 60 Hz						
	周波数	確度	± 0.1 %							
	電圧変動率		±3%以下(最大定格負荷→無負荷)							
	短絡電流		200 mA 以上(出力電圧 0.5 kV 以上)							
	出力方式		PWM スイッチング方式							
開始電圧(Star	rt Voltage)		試験開始時の電圧を設定可能							
		設定範囲	試験電圧の1%~9	99 %						
		分解能	1%							
出力電圧監視機能		出力電圧が ± (10 % of setting + 0.05 kV) を越えた場合、出力が遮断され保護機能が作動								

[DC 出力機能]

項目			TOS9301	TOS9301PD	TOS9303	TOS9303LC			
	出力電圧範囲		0.050 kV ~ 7.200 kV						
		分解能	1V						
		設定確度	± (1.2 % of setting + 0.02 kV)						
	最大定格負荷 *1		100 W (5 kV / 20 mA, 7.2 kV /	13.9 mA)					
DC 出力部	最大定格電流		20 mA						
ル田川部	リップル	7.2 kV 無負荷	20 Vp-p (TYP)						
	19971	最大定格負荷	50 Vp-p (TYP)						
	電圧変動率		1%以下(最大定格負荷→無負荷)						
	短絡電流		100 mA (TYP) (200 mA peak)						
	放電機能		試験終了時に強制放電(放電抵抗 125 kΩ)						
開始電圧(Star	t Voltage)		試験開始時の電圧を設定可能	;					
		設定範囲	試験電圧の1%~99%						
		分解能	1 %						
出力電圧監視核	幾能		出力電圧が ± (10 % of setting + 0.05 kV) を越えた場合、出力が遮断され保護機能が作動						

[測定機能]

項目		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC			
	測定範囲	0.00 kV ~ 7.50 kV	AC / DC							
	分解能	0.1 V								
電圧計	確度	$\pm(1.2\%$ of reading + 0.005 kV)								
电圧引	応答	真の実効値/平均値	直応答実効値換算を	切り替え可能						
		別系統に波高値応答	J系統に波高値応答(波高値応答は RISE 中の絶縁破壊電圧測定用)							
	ホールド機能	試験終了時の測定電圧値を、PASS / FAIL 判定表示中に保持								
<u> </u>	測定範囲	AC: $0.00~\text{mA} \sim 110~\text{mA}$ 、DC: $0.00~\text{mA} \sim 22~\text{mA}$ (実効成分と無効成分を含めた電流)								
	確度	± (1 % of reading + 2 μA) (実効成分)								
	応答	真の実効値/平均値	直応答実効値換算を	切り替え可能						
雨 汰斗 *1 *2	ホールド機能	試験終了時の測定電	電流値を PASS 判定	長示中に保持						
電流計 *1 *2	オフセットキャンセル機能	出力ケーブル間などの絶縁抵抗、ストレー容量成分に流れる電流を、 それぞれ最大 10 mAまでキャンセル (DC 試験は抵抗成分のみ)。OFF機能あり。								
	校正	実効成分: 純抵抗負荷を使用して正弦波の実効値で校正 無効成分: 非校正								

^{*1} 連続で試験をする場合、上限判定基準値の設定によっては出力時間の制限と休止時間が必要になることがあります。
*2 容量性の負荷に交流電圧を印加すると、負荷の容量分の値によっては無負荷よりも出力電圧が上昇することがあります。
さらに、容量の値に電圧依存性のある試料(セラミックコンデンサなど)を負荷にした場合には、波形にひずみが発生することがあります。
ただし、試験電圧 1.5 kV の場合には、1000 pF 以下の容量の影響は無視できます。また、本器の高圧電源部は PWM スイッチング方式のため、試験電圧が 500 V 以下ではスイッチングノイズ、スパイクノイズの占める割合が大きくなり、試験電圧が低くなるほど波形のひずみも大きくなります。

^{*1} 交流電圧試験では、テストリードや治具などのストレー容量にも電流が流れます。
*2 高温多湿時には本製品内部、外部の高電圧配線部から接地に対して誤差電流が多くなります。湿度が 70 % を超えると 50 μA 程度の誤差電流が発生する場合があります。

- 特に指定のない限り、仕様は下記の設定および条件に準じます。 ・ウォームアップ時間は、30分(電流を流した状態)とします。・TYP:周囲温度 23 ℃の代表的な値です。性能を保証するものではありません。 ・set:設定値を示します。・range:各レンジの定格を示します。・reading:読み値を示します。 ・各試験の略字を次のように記載します。ACW: 交流耐電圧、DCW:直流耐電圧、IR:絶縁抵抗、EC:アース導通、PD:部分放電、LC:漏れ電流、TC:接触電流、PCC:保護導体電流、Patient:患者漏れ電流、Meter:メータモード

[判定機能]

項目			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC			
					量は PASS、FAIL それ のみブザーが有効。	hぞれ個別に 0 (OFI	- う ~ 10 まで設定可	能。			
		判定方法		pper) 以上の電流を 時間 (Judge Delay)	検出すると UPPER F 中は判定しない。	AIL判定。					
	Upper FAIL	表示部	「Upper-FAIL」が表示される								
		ブザー	オン								
		SIGNAL I/O	STOP 信号が入力さ	れるまで連続で U	FAIL 信号が出力され	る					
電流判定動作		判定方法		. ,	検出すると LOWER F 験の電圧降下時間(F		しない。				
	Lower FAIL	表示部	「Lower-FAIL」が表示される								
		ブザー	オン								
		SIGNAL I/O	STOP 信号が入力さ	STOP 信号が入力されるまで連続で L FAIL 信号が出力される							
		判定方法	試験時間を経過して	C Upper-FAIL、Lov	ver-FAIL でなければ	PASS 判定。					
		表示部	「PASS」が表示され	る							
	PASS	ブザー	オン(50 ms 固定)								
		SIGNAL I/O	Pass Hold で設定した時間まで PASS 信号が出力される。 Pass Hold で Infinity を設定した場合には STOP 信号が入力されるまで連続で PASS 信号が出力される。								
電圧上昇率判定	雪動作		以上の場合に有効。	判定時に出力が遮	昇率を監視。判定遅 断される。 別に 0(OFF) ~ 10 ま		Delay Auto) が ON	で出力電圧が 0.2kV			
		判定方法	電圧上昇率(dV/dt	:)が 約 1 V / s に満 <i>t</i>	たない場合に判定。						
	-1\//-1+ EAU	表示部	ΓUpper-FAIL (dV/d	t)」が表示される							
	dV/dt FAIL	ブザー	オン								
		SIGNAL I/O	STOP 信号が入力さ	れるまで連続で U	FAIL 信号が出力され	る					
上限判定基準値	(Upper)設定範囲		AC: 0.01 mA ∼ 11	0.00 mA / DC: 0.0	1 mA ∼ 21.00 mA						
下限判定基準値	(Lower)設定範囲		AC: 0.00 mA ∼ 10	9.99mA / DC: 0.0	0 mA \sim 20.99 mA、	OFF。0.00 に設定時	身は OFFと等価。				
判定確度 *1 *2			\pm (1 % of setting + 5 μ A)								
電流検出方法			下記の方法で基準値と比較 真の実効値を算出/平均値応答を実効値に換算								
応答速度(Filte	つ切り替え		ACW 試験、DCW 記	試験で UPPER FAIL i	判定の電流検出応答選	速度(感度)を5段階	に切り替え。				
											

- 1 交流電圧試験では、テストリードや治具などのストレー容量にも電流が流れます。 *2 高温多湿時には本製品内部、外部の高電圧配線部から接地に対して観差電池が多く。
- これ 高温多湿時には本製品内部、外部の高電圧配線部から接地に対して誤差電流が多くなります。湿度が 70 % を超えると 50 μA 程度の誤差電流が発生する場合があります。

[タイマー機能]

項目	TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
電圧上昇時間(Rise Time)設定範囲	0.1 s ∼ 200.0 s	0.1 s ~ 200.0 s						
電圧降下時間(Fall Time)設定範囲 *1	0.1 s ~ 200.0 s、OFF							
試験時間(Test Time)設定範囲	0.1 s ~ 1000.0 s、OFF							
判定遅延時間(Judge Delay)設定範囲 *2	0.1 s ~ 100.0 s、AUTO *3(DCW のみ)							
確度	± (100 ppm of setting + 20 ms) (Fall Time を除く)							

- *1 ACW 試験、DCW 試験で PASS 判定時のみ有効です。DCW 試験時は、本製品内部および EUT の静電容量のため、設定時間中に電圧が下がりきらないことがあります。
 *2 Rise Time と Test Time を合計した時間より短い時間のみ設定できます。
 *3 Delay Auto を ON に設定した場合、充電時間が終了するまで LOWER 判定を行いません。

[その他の仕様]

項目		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC	
アナログモニタ *1		電流波形、電圧波形に応じた電圧信号が出力される						
	I	電流波形: Scale 50) mA / 1 V					
	V	電圧波形: Scale 1	kV / 1 V					
接地方式(GND)		Low と Guard に切り替え可能						
	GND が LOW 端子に接続される。LOW 端子(シャシ)に流れる電流が測定される(通常用途)。							
	Guard *2	GND がガードに接 LOW 端子に流れる		シャシに流れる電流	流は測定されない(高	· · · · · · · · · · · · · · · · · · ·	用途)。	

- モニタ用の信号は、シャシ(アース)から絶縁されて出力されます。オシロスコープなどの BNC シールドが接地される外部機器を接続する場合には、必ず接地方式(GND)を Low に設定してください。 値は校正されていません。 EUT および治具などが接地される可能性がある、あるいは不明な場合には、絶対に GND を Guard に設定しないでください。電流計が短絡され、電流を測定できないため大変危険です。
- 通常の用途では GND は Low に設定してください。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■絶縁抵抗試験部仕様

[出力機能]

項目			TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC			
			- 0.025 kV ~ - 1 kV							
	出力電圧範囲	分解能	1 V							
		設定確度	± (1.2 % of setting + 0.002 kV)							
負極	最大定格負荷		1 W (- 1 kV / 1 mA)							
		1 kV無負荷	2 Vp-p 以下							
	リップル	最大定格負荷	10 Vp-p 以下							
	短絡電流		12 mA 以下	2 mA 以下						
1				+0.05 kV ~ +7.2 kV						
	出力電圧範囲	分解能	1V							
		設定確度		\pm (1.2 % of setting + 0.02 kV)						
E極 *1	最大定格負荷		-	7.2 W (7.2 kV / 1 mA)						
	リップル	1 kV無負荷		20 Vp-p 以下						
	99710	最大定格負荷		50 Vp-p 以下						
	短絡電流			100 mA (TYP) (200 mA peak)						
最大定格電流	ti e		1 mA							
電圧変動率			1%以下(最大定格負荷	1%以下(最大定格負荷→無負荷)						
放電機能	·		試験終了時に強制放電(放電抵抗 20 kΩ)							
出力電圧監視機能			出力電圧が ± (10 % of setting + 0.05 kV) を越えた場合、出力が遮断され保護機能が作動							

^{*1} TOS9300 は非対応。

「測定機能]

項目			TOS9300 TO	S9301	TOS9301PD	TOS9303	TOS9303LC		
	測定範囲		負極: 0 Vdc~ - 1.2 kVdc、正極:	0 Vdc∼ 7.5 k	Vdc				
三 圧計	分解能		0.1 V						
	確度		負極: ±(1% of reading + 0.001 kV)、正極: ±(1.2% of reading + 0.001 kV)						
	測定範囲		$0.001~{ m M}\Omega\sim 100.0~{ m G}\Omega$ (最大定格電流の $1~{ m m}A$ から $5~{ m n}A$ の範囲にて)						
			500.000 MΩ \leq R $<$ 1.000 GΩ :	± (15 % of	reading + 0.5 MΩ)				
		$5 \text{ nA} \leq i \leq 50 \text{ nA} *3$	1.000 GΩ \leq R $<$ 10.000 GΩ :	± (15 % of	reading + 5 MΩ)				
			$10.000 \text{ G}\Omega \leq R \leq 100.000 \text{ G}\Omega$:	± (20 % of rea	ading + 200 MΩ)				
			200.000 MΩ \leq R $<$ 1.000 GΩ :	± (10 % of rea	ading + 0.5 MΩ)				
			1.000 GΩ \leq R $<$ 10.000 GΩ :	± (10 % of	reading + 5 MΩ)				
		$50 \text{ nA} < i \le 100 \text{ nA} *3$	10.000 GΩ ≤ R < 50.000 GΩ :	± (10 % of	reading + 50 MΩ)				
確度 *1 *2		$50.000 \text{ G}\Omega \le R \le 100.000 \text{ G}\Omega$:	± (20 % of	reading + 200 MΩ)					
		100.000 MΩ \leq R $<$ 1.000 GΩ :	± (7 % of rea	ding + 0.5 MΩ)					
	確長 I Z (GND が Guard	100 nA < i \leq 200 nA *4	1.000 GΩ \leq R $<$ 2.000 GΩ :	± (7 % of r	eading +5 MΩ)				
	の場合)		2.000 GΩ ≤ R < 10.000 GΩ :	± (7 % of r	eading + 10 MΩ)				
(i: 測定電流) (R: 測定抵抗)			10.000 GΩ ≤ R < 50.000 GΩ :	± (7 % of r	eading + 100 MΩ)				
		$10.000 \text{ M}\Omega \le R < 100.000 \text{ M}\Omega$:	± (5 % of r	eading + 0.05 MΩ)					
		200 nA < $i \le 1$ μA *4	100.000 MΩ \leq R $<$ 1.000 GΩ :	± (5 % of r	eading + 0.5 MΩ)				
			1.000 GΩ \leq R $<$ 10.000 GΩ :	± (5 % of r	eading +5 MΩ)				
			$10.000 \text{ G}\Omega \leq R < 25.000 \text{ G}\Omega$:	± (5 % of r	eading +50 MΩ)				
			$0.001~\text{M}\Omega \le R < 10.000~\text{M}\Omega$:	± (2 % of r	eading + 0.003 MΩ)				
抵抗計		$1 \mu A < i \le 1 \text{mA *4}$	10.000 MΩ \leq R $<$ 100.000 MΩ :	± (2 % of r	eading + 0.03 MΩ)				
			100.000 MΩ \leq R $<$ 1.000 GΩ :	± (2 % of r	eading + 0.3 MΩ)				
			1.000 GΩ \leq R $<$ 5.000 GΩ :	± (2 % of r	eading +3 MΩ)				
			500.000 MΩ \leq R $<$ 1.000 GΩ :	± (25 % of	reading + 0.5 MΩ)				
		$5 \text{ nA} \leq i \leq 50 \text{ nA} *3$	1.000 GΩ \leq R $<$ 10.000 GΩ :	± (25 % of	reading + 5 MΩ)				
			$10.000 \text{ G}\Omega \leq R \leq 100.000 \text{ G}\Omega$:	\pm (30 % of	reading + 200 MΩ)				
			200.000 MΩ \leq R $<$ 1.000 GΩ :	\pm (20 % of	reading + 0.5 MΩ)				
		50 nA < i ≦ 100 nA *3	1.000 GΩ \leq R $<$ 10.000 GΩ :	± (20 % of	reading + 5 MΩ)				
	確度 *5	30 HA < 1 ≧ 100 HA 3	10.000 GΩ \leq R $<$ 50.000 GΩ :	± (20 % of	reading + 50 MΩ)				
	(GNDが		$50.000 \text{ G}\Omega \leq R \leq 100.000 \text{ G}\Omega$:	\pm (30 % of	reading + 200 MΩ)				
	Lowの場合)		100.000 MΩ \leq R $<$ 1.000 GΩ:	± (10 % of	reading + 0.5 MΩ)				
	(i: 測定電流)	100 nA < i ≦ 200 nA *4	$1.000 \mathrm{G}\Omega \leq \mathrm{R} < 2.000 \mathrm{G}\Omega$:	\pm (10 % of	reading + 5 MΩ)				
	(R: 測定抵抗)	100 IIA < 1 \(\ext{1} \(\ext{2} \) 200 IIA 4	$2.000 GΩ \le R < 10.000 GΩ$:	\pm (10 % of	reading + 10 MΩ)				
		10.000 GΩ \leq R $<$ 50.000 GΩ :	\pm (10 % of	reading + 100 MΩ)					
			10.000 MΩ \leq R $<$ 100.000 MΩ :	± (5 % of r	eading + 0.05 MΩ)				
		200 nA < i \leq 1 μ A *4	100.000 MΩ \leq R $<$ 1.000 GΩ:	± (5 % of r	eading + 0.5 MΩ)				
		200 HA \ 1 ≧ 1 μΑ 4	1.000 GΩ \leq R $<$ 10.000 GΩ :	± (5 % of r	eading + 5 MΩ)				
			10.000 GΩ \leq R $<$ 25.000 GΩ :	± (5 % of r	eading + 50 MΩ)				

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

[測定機能]

項目		TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC	
確	確度 *5(GNDが		$0.001 \text{M}\Omega \le R < 10.00$	0 MΩ: \pm (2 % of r	eading + 0.003 MΩ)		
	Lowの場合)(i: 測定電流) 1 μA		$10.000 \text{ M}\Omega \leq R < 100.$	000 MΩ: ± (2 % of r	eading + 0.03 MΩ)		
抵抗計		1 μA<1 ≥ 1 mA *4	100.000 MΩ ≤ R < 1.0	00 GΩ: \pm (2 % of r	eading + 0.3 MΩ)		
担が同	(R: 測定抵抗		$1.000 \text{G}\Omega \le \text{R} < 5.000$	$G\Omega$: \pm (2 % of r	eading + 3 MΩ)		
	ホールド機能		試験終了時の測定抵抗値を PASS 判定表示中に保持				
	オフセットキャンセル機能		出力ケーブル間などの、測定に不要な絶縁抵抗を最大 2000 GΩ までキャンセル。 OFF 機能あり。				り。

- *1 湿度 70 %rh 以下(結露なし)、テストリードの揺れなどの外乱がない場合。
 *2 多湿環境下で接地方式(GND)を Low に設定した場合には、本製品内部の高電圧配線部、および本製品と EUT 間の高電圧配線部から接地に漏れ電流が発生します。この漏れ電流は、オプションの高電圧スキャナ TOS9320 の使用や配線状況によって数 nA ~数+μA になり、測定確度に大きく影響します。オフセットを有効にして測定することで、漏れ電流の影響を低減させることができます。
 *3 100 V 以下の測定時は確度に 10 % を加算。
 *4 100 V 以下の測定時は確度に 5 % を加算。
 *5 湿度 50 %rh 以上の環境下では測定電流を 100 nA 以上に限定(結露なし)、テストリードの揺れなどの外乱がなく、オフセットが有効の場合。

[判定機能]

			TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC		
			判定時に出力が遮断される 設定可能。自動試験ではプ			こ0(OFF) ~10まで			
		判定方法	上限判定基準値(Upper)以上の抵抗値を検出すると UPPER FAIL判定。 電圧上昇時間(Rise Time) 中は判定しない。						
Uppe	Upper FAIL	表示部	「Upper-FAIL」が表示される						
		ブザー	オン	ν					
		SIGNAL I/O	STOP 信号が入力されるま ⁻	TOP 信号が入力されるまで連続で U FAIL 信号が出力される					
判定動作		判定方法	下限判定基準値 (Lower) 以 判定待ち時間 (Judge Delay		ると LOWER FAIL判定。				
	Lower FAIL	表示部	「Lower-FAIL」が表示される						
		ブザー	オン						
		SIGNAL I/O	STOP 信号が入力されるま ⁻	で連続で L FAIL 信号	 が出力される				
		判定方法	試験時間を経過して Upper	-FAIL、Lower-FAIL	でなければ PASS 判定。				
		表示部	「PASS」が表示される						
	PASS	ブザー	オン(50 ms 固定)						
		SIGNAL I/O	Pass Hold で設定した時間 力されるまで連続で PASS を		力される。Pass Hold つ	で Infinity を設定した場	合には STOP 信号が <i>)</i>		
電圧上昇率料	判定動作		電圧上昇時間(Rise Time) 「 以上の場合に有効。判定時 可能。			•			
		判定方法	電圧上昇率(dV / dt)が約1	 V / s に満たない場合	 うに判定。				
	1547 15 = 440	表示部	「Lower-FAIL(dV/dt)」が表示	示される					
	dV/dt FAIL	ブザー	オン						
		SIGNAL I/O	STOP 信号が入力されるま ⁻	で連続で L FAIL 信号	 が出力される				
上限判定基準	準値(Upper)設定單	· 色囲	$0.001 M\Omega \sim 100.000 G\Omega$ (i	最大定格電流以下の	節囲にて)、OFF				
下限判定基準	準値(Lower)設定軍	· · · · · · · · · · · · · · · · · · ·	0.000 MΩ ~ 99.999 GΩ (最	大定格電流以下の範	囲にて)、OFF。0.000	に設定時は OFF と等価	0		
NTILE 至午 II (LOWEI)			1/150/ 5						
			$ 500.000 \text{ M}\Omega \le R < 1.000 \text{ G} $	$\pm \Omega: \pm (15\%)$ of :	setting + 0.51 MΩ)				
		5 nA ≦ i ≦ 50 nA *4	$1.000 \text{ G}\Omega \le R < 1.000 \text{ G}\Omega$	•	setting + 0.51 M Ω) setting + 15 M Ω)				
		5 nA ≦ i ≦ 50 nA *4		1: ± (15 % of					
		5 nA ≦ i ≦ 50 nA *4	$1.000 \mathrm{G}\Omega \leq \mathrm{R} < 10.000 \mathrm{G}\Omega$	$\pm (15 \% \text{ of } 2)$ $\pm (20 \% \text{ of } 2)$	setting + 15 MΩ)				
			1.000 GΩ ≤ R < 10.000 GΩ 10.000 GΩ ≤ R ≤ 100.000	$ \begin{array}{ll} \Omega: & \pm (15\% \text{ of } \\ G\Omega: & \pm (20\% \text{ of } \\ G\Omega: & \pm (10\% \text{ of } \\ \end{array} $	setting + 15 M Ω) setting + 210 M Ω)				
		$5 \text{ nA} \le i \le 50 \text{ nA} *4$ $50 \text{ nA} < i \le 100 \text{ nA} *4$	$\begin{array}{c} 1.000 \text{ G}\Omega \leqq \text{R} < 10.000 \text{ G}\Omega \\ 10.000 \text{ G}\Omega \leqq \text{R} \leqq 100.000 \\ 200.000 \text{ M}\Omega \leqq \text{R} < 1.000 \text{ G}\Omega \\ \end{array}$	$ \begin{array}{lll} \Omega: & \pm (15\% \text{ of } \\ G\Omega: & \pm (20\% \text{ of } \\ G\Omega: & \pm (10\% \text{ of } \\ \Omega: & \pm (10\% \text{ of } \\ \end{array} $	Setting + 15 M Ω) Setting + 210 M Ω) Setting + 0.51 M Ω)				
			$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R \leqq 100.000 \\ 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \end{array}$	$ \begin{array}{ccc} \Omega: & \pm (15\% \text{ of } \\ G\Omega: & \pm (20\% \text{ of } \\ G\Omega: & \pm (10\% \text{ of } \\ \Omega: & \pm (10$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω)				
			$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R \lessapprox 100.000 \\ 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 60 M Ω)				
		50 nA < i ≦ 100 nA *4	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ GL \\ 10.000 \ G\Omega \leqq R \lessapprox 100.000 \\ 200.000 \ M\Omega \leqq R < 1.000 \ GL \\ 1.000 \ G\Omega \leqq R < 10.000 \ GL \\ 10.000 \ G\Omega \leqq R < 50.000 \ GL \\ 50.000 \ G\Omega \leqq R \lessapprox 100.000 \end{array}$	$\Omega: \pm (15\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (7\% \text{ of } G\Omega): \pm (7\% \text{ of } G\Omega): \pm (7\% \text{ of } G\Omega)$	Setting + 15 M Ω) Setting + 210 M Ω) Setting + 0.51 M Ω) Setting + 15 M Ω) Setting + 60 M Ω) Setting + 210 M Ω)				
(GND が Gu	iardの場合)		$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R \leqq 100.000 \\ 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 50.000 \ G\Omega \leqq R \leqslant 100.000 \\ 100.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \end{array}$	$\Omega: \pm (15\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (7\% \text{ of } G\Omega): \pm$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 60 M Ω) setting + 210 M Ω) setting + 0.51 M Ω)				
	iardの場合) [)	50 nA < i ≦ 100 nA *4	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \leqq 100.000 \\ 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ \hline 50.000 \ G\Omega \leqq R \leqslant 100.000 \\ \hline 100.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 100.000 \ M\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega E \\ \hline 1.0000 \ G\Omega E \\ \hline 1.0000 \ G\Omega E $	$\Omega: \pm (15\% \text{ of } 3)$ $G\Omega: \pm (20\% \text{ of } 3)$ $G\Omega: \pm (10\% \text{ of } 3)$ $G\Omega: \pm (10\% \text{ of } 3)$ $G\Omega: \pm (10\% \text{ of } 3)$ $G\Omega: \pm (20\% \text{ of } 3)$ $G\Omega: \pm (7\% \text{ of } 3)$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 15 M Ω 0 setting + 210 M Ω 0 setting + 210 M Ω 0 setting + 0.51 M Ω 0 setting + 15 M Ω 0				
(GND が Gu (i: 測定電流	iardの場合) [)	50 nA < i ≦ 100 nA *4	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \leqq 100.000 \\ \hline 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ \hline 50.000 \ G\Omega \leqq R \leqslant 100.000 \\ \hline 100.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 100.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.0000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.0000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.0000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.0000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.0000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.0000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R \leqslant 1.0000 \ G\Omega $	$\Omega: \pm (15\% \text{ of } 3)$ $G\Omega: \pm (20\% \text{ of } 3)$ $G\Omega: \pm (10\% \text{ of } 3)$ $G\Omega: \pm (10\% \text{ of } 3)$ $G\Omega: \pm (10\% \text{ of } 3)$ $G\Omega: \pm (20\% \text{ of } 3)$ $G\Omega: \pm (7\% \text{ of } 3)$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 15 M Ω) setting + 60 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 20 M Ω)				
(GND が Gu (i: 測定電流	iardの場合) [)	50 nA < i ≤ 100 nA *4 100 nA < i ≤ 200 nA *5	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R \leqq 100.000 \\ 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 50.000 \ G\Omega \leqq R \lessapprox 100.000 \\ 100.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.0000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.0000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.0000 \ G\Omega \leqq R < 50.0000 \ G\Omega \\ 10.0000 \ G\Omega \leqq R < 50.0000 \ G\Omega \\ 10.0000 \ G\Omega \leqq R < 50.0000 \ G\Omega \\ 10.0000 \ G\Omega \leqq R < 50.0000 \ G\Omega \\ 10.0000 \ G\Omega \leqq R < 50.0000 \ $	$\Omega: \pm (15\% \text{ of } \Omega)$ $\Xi: \pm (20\% \text{ of } \Omega)$ $\Xi: \pm (20\% \text{ of } \Omega)$ $\Xi: \pm (10\% \text{ of } \Omega)$ $\Xi: \pm (7\% \text{ of } \Omega)$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 16 M Ω 0 setting + 210 M Ω 0 setting + 210 M Ω 0 setting + 210 M Ω 0 setting + 20 M Ω 0 setting + 20 M Ω 0 setting + 210 M Ω 0				
(i: 測定電流	iardの場合) [)	50 nA < i ≦ 100 nA *4	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R \leqq 100.000 \\ 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 50.000 \ G\Omega \leqq R \leqq 100.000 \\ 100.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ 10.000 \ M\Omega \\ 10.0000 \$	$\Omega: \pm (15\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (10\% \text{ of } G\Omega): \pm (20\% \text{ of } G\Omega): \pm (7\% \text{ of } G\Omega): \pm (5\% \text{ of } G\Omega)$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 15 M Ω) setting + 60 M Ω) setting + 210 M Ω) setting + 210 M Ω) setting + 15 M Ω) setting + 110 M Ω) setting + 110 M Ω) setting + 100 M Ω)				
(GND が Gu (i: 測定電流	iardの場合) [)	50 nA < i ≤ 100 nA *4 100 nA < i ≤ 200 nA *5	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \lessapprox 100.000 \ G\Omega \\ \hline 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ \hline 50.000 \ G\Omega \leqq R \lessapprox 100.000 \ G\Omega \\ \hline 100.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega $	$ \begin{array}{lll} \Omega: & \pm (15\% \text{ of } s) \\ G\Omega: & \pm (20\% \text{ of } s) \\ G\Omega: & \pm (10\% \text{ of } s) \\ \Omega: & \pm (10\% \text{ of } s) \\ \Omega: & \pm (10\% \text{ of } s) \\ G\Omega: & \pm (20\% \text{ of } s) \\ G\Omega: & \pm (7\% \text{ of } s) \\ \Omega: & \pm (7\% \text{ of } s) \\ \Omega: & \pm (7\% \text{ of } s) \\ \Omega: & \pm (5\% \text{ of } s) \\ \Omega: & \pm (5\% \text{ of } s) \\ \Omega: & \pm (5\% \text{ of } s) \end{array} $	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 60 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 10 M Ω 0 setting + 110 M Ω 0 setting + 0.06 M Ω 0 setting + 0.51 M Ω 0				
(GND が Gu (i: 測定電流	iardの場合) [)	50 nA < i ≤ 100 nA *4 100 nA < i ≤ 200 nA *5	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \lessapprox 100.000 \ G\Omega \\ \hline 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \leqslant 100.000 \ G\Omega \\ \hline 100.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Setting + 15 M Ω) Setting + 210 M Ω) Setting + 0.51 M Ω) Setting + 0.51 M Ω) Setting + 15 M Ω) Setting + 60 M Ω) Setting + 210 M Ω) Setting + 210 M Ω) Setting + 15 M Ω) Setting + 10 M Ω 0 Setting + 10 M Ω 0 Setting + 10 M Ω 0 Setting + 0.51 M Ω 0 Setting + 0.51 M Ω 0 Setting + 15 M Ω 0				
(GND が Gu (i: 測定電流	iardの場合) [)	50 nA < i \leq 100 nA *4 100 nA < i \leq 200 nA *5 200 nA < i \leq 1 μ A *5	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \lessapprox 100.000 \ G\Omega \\ \hline 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 50.000 \ G\Omega \\ \hline 50.000 \ G\Omega \leqq R \lessapprox 100.000 \ G\Omega \\ \hline 100.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 2.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 100.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 25.000 \ G\Omega \\ \hline 1.000 \ G\Omega \end{gathered} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 60 M Ω) setting + 210 M Ω) setting + 210 M Ω) setting + 15 M Ω) setting + 10 M Ω 0 setting + 10 M Ω 0 setting + 0.06 M Ω 0 setting + 0.51 M Ω 0 setting + 0.51 M Ω 0 setting + 15 M Ω 0 setting + 15 M Ω 0				
(GND が Gu (i: 測定電流	iardの場合) [)	50 nA < i ≤ 100 nA *4 100 nA < i ≤ 200 nA *5	$\begin{array}{c} 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \leqq 100.000 \ G\Omega \\ \hline 200.000 \ M\Omega \leqq R < 1.000 \ G\Omega \\ \hline 1.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \lessgtr 100.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R \leqslant 100.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 1.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ M\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline 10.000 \ G\Omega \leqq R < 10.000 \ G\Omega \\ \hline $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	setting + 15 M Ω) setting + 210 M Ω) setting + 0.51 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 60 M Ω) setting + 210 M Ω) setting + 210 M Ω) setting + 15 M Ω) setting + 15 M Ω) setting + 10 M Ω) setting + 0.06 M Ω) setting + 0.51 M Ω) setting + 15 M Ω) setting + 15 M Ω)				

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

[測定機能]

項目		TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC
		$500.000 \text{M}\Omega \le R < 1.0$	$000 \text{G}\Omega: \pm (25 \% \text{c})$	f setting + 0.51 MΩ)		
	$5 \text{ nA} \leq i \leq 50 \text{ nA *4}$	$1.000~\mathrm{G}\Omega \leq \mathrm{R} < 10.00$	$00 \text{G}\Omega$: \pm (25 % c	f setting + 15 MΩ)		
		$10.000 \text{ G}\Omega \leq R \leq 100.$.000 GΩ: \pm (30 % c	f setting + 210 MΩ)		
		$200.000 \text{ M}\Omega \le R < 1.0$	$000 \text{G}\Omega : \pm (20 \% \text{c})$	f setting + 0.51 M Ω)		
	50 nA < i ≤ 100 nA *4	$1.000 \mathrm{G}\Omega \leq \mathrm{R} < 10.00$	$00 \text{G}\Omega$: \pm (20 % c	f setting + 15 MΩ)		
	30 IIA < 1 = 100 IIA 4	$10.000 \text{ G}\Omega \leq R < 50.0$	$000 \text{G}\Omega: \pm (20 \% \text{c})$	f setting + 60 MΩ)		
		$50.000 \text{ G}\Omega \leq R \leq 100.$.000 GΩ: \pm (30 % c	f setting + 210 MΩ)		
	100 nA < i ≦ 200 nA *5	$100.000 \text{ M}\Omega \le R < 1.0$	$000 \text{G}\Omega: \pm (10 \% \text{c})$	f setting + 0.51 MΩ)		
確度 *6		1.000 GΩ ≤ R < 2.000	Θ GΩ: \pm (10 % c	f setting + 15 MΩ)		
(GND が Lowの場合) (i: 測定電流)		$2.000 \text{ G}\Omega \le R < 10.00$	$00 \text{G}\Omega$: $\pm (10 \% \text{c})$	f setting + 20 MΩ)		
(R: 測定抵抗)		$10.000 \text{ G}\Omega \le R < 50.0$	$000 \text{G}\Omega: \pm (10 \% \text{c})$	f setting + 110 MΩ)		
		$10.000 \text{ M}\Omega \leq R < 100$.000 M Ω : \pm (5 % of	setting + 0.06 MΩ)		
	200 nA < $i \le 1$ μA *5	$100.000 \text{ M}\Omega \leq R < 1.0$	$000 \text{G}\Omega : \pm (5 \% \text{of})$	setting + 0.51 MΩ)		
	200 ΠΑ < Γ 🖃 Ι μΑ 🦁	$1.000 \mathrm{G}\Omega \leq \mathrm{R} < 10.00$	$00 G\Omega$: \pm (5 % of	setting + 15 MΩ)		
		$10.000 \text{ G}\Omega $ ≤ R < 25.0	$000 \text{G}\Omega$: \pm (5 % of	setting + 60 MΩ)		
		$0.001 \mathrm{M}\Omega \leq \mathrm{R} < 10.00$	$00 \text{ M}\Omega$: \pm (2 % of	setting + 0.013 MΩ)		
	$1 \mu A < i \le 1 mA *5$	$10.000 \text{ M}\Omega \leq R < 100$.000 M Ω : \pm (2 % of	setting + 0.04 MΩ)		
	I μΑ \ I ≅ I IIIA 3	$100.000~\mathrm{M}\Omega \leq \mathrm{R} < 1.0$	\pm (2 % of	setting + 0.31 MΩ)		
		1.000 GΩ ≤ R < 5.000	\pm (2 % of	setting + 13 MΩ)		

- *1 200 µA 以下の判定には、Rise Time が終了後 3 秒以上の時間が必要です。Low Pass Filter がオンの場合の判定には、Rise Time が終了後 10 秒以上の時間が必要です。
 *2 温度 70% rh 以下(結露なし)、テストリードの揺れなどの外乱がない場合。
 *3 多湿環境下で接地方式(GND)を Low に設定した場合には、本製品内部の高電圧配線部、および本製品と FIIT 関の宣電圧和線部 かいた 塩地に戻れる またまでまた。 湿度 70% in 以下(結露なし)、テストリードの揺れなどの外乱がない場合。 多湿環境下で接地方式(GND)を Low に設定した場合には、本製品内部の高電圧配線部、および本製品と EUT 間の高電圧配線部から接地に漏れ電流が発生します。この漏れ電流は、オプションの高電

[タイマー機能]

項目	TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC
電圧上昇時間(Rise Time)設定範囲	0.1 s ~ 200.0 s				
試験時間(Test Time)設定範囲	0.1 s ~ 1000.0 s、OFF				
判定遅延時間(Judge Delay)設定範囲 *1	0.1 s ~ 100.0 s、AUTO *2				
確度 *3	\pm (100 ppm of setting + 20 ms)				

- *1 Rise Time と Test Time を合計した時間より短い時間のみ設定できます。 *2 Delay Auto を ON に設定した場合、充電時間が終了するまで UPPER 判定を行いません。
- *3 Fall Time を除く。

[その他の仕様]

項目		TOS9300	TOS9301	TOS9301PD	TOS9303	TOS9303LC	
接地方式(GND)		Low と Guard に切り替	Low と Guard に切り替え可能				
	Low	GND が LOW 端子に接約	GND が LOW 端子に接続される。LOW 端子 (シャシ) に流れる電流が測定される (通常用途)。				
	Guard *1	GND がガードに接続さ LOW 端子に流れる電流 (高感度、高精度測定用	このみが測定され、シャ:	シに流れる電流は測定さ	きれない		
フィルタ機能		電流計測回路にローパ	電流計測回路にローパスフィルタを入れることが可能。*2				

- *1 EUT および治具などが接地される可能性がある、あるいは不明な場合には、絶対に GND を Guard に設定しないでください。 電流計が短絡され、電流を測定できないため大変危険です。通常の用途では GND は Low に設定してください。 *2 Low Pass Filter が ON の場合は、5 秒以上の判定遅延時間および試験時間が必要。

■アース導通試験部

[出力機能]

項目		TOS9302	TOS9303	TOS9303LC				
			3.0 A ~ 42.0 A AC / DC					
電流設定範圍	那 *1	分解能	0.1 A					
		確度	± (1 % of setting + 0.4 A)	\pm (1 % of setting + 0.4 A)				
	最大定格出力 *2		220 VA(出力端子において)					
	ひずみ率		2 %以下(20 A 以上、0.1 Ω 純抵抗負荷にて)					
AC	周波数		50 Hz、60 Hz から選択。正弦波					
AC	问权数	確度	± 200 ppm					
	開放端子電圧		6 Vrms以下					
	出力方式		PWM スイッチング方式					
	最大定格負荷		220 W(出力端子において)					
DC	リップル		± 0.4 Ap-p 以下(TYP)					
	開放端子電圧		6.0 V以下					

^{*1} 最大定格出力以下で、出力端子電圧5.4V以下の抵抗の場合。 *2 連続で試験をする場合には、上限判定基準値の設定によっては出力時間の制限と休止時間が必要になることがあります

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

[測定機能]

項目		TOS9302	TOS9303	TOS9303LC				
	測定範囲	0.0 A ~ 45.0 A AC / DC						
	分解能	0.01 A	0.01 A					
出力電流計	確度	± (1 % of reading + 0.2 A)						
	応答	AC: 平均値応答実効値表示、DC: 平均	直					
	ホールド機能	試験終了時の測定電流値を PASS、FAII	- 判定表示中に保持。					
	測定範囲	AC: 0.00 V ~ 6.00 V, DC: 0.00 V ~ 5.5	50 V					
	分解能	0.001 V						
出力電圧計	オフセットキャンセル機能	試験に不要な電圧値を測定値から最大	5 V(AC/DC)までキャンセル。 OFF 機能	あり。				
山川電圧 計	確度	± (1 % of setting + 0.02 V)						
	応答	AC: 平均値応答実効値表示、DC: 平均値						
	ホールド機能	試験終了時の測定電圧値を PASS、FAIL 判定表示中に保持。						
	測定範囲 *1	$1\mathrm{m}\Omega\sim600\mathrm{m}\Omega$						
	分解能	1 mΩ						
抵抗計	オフセットキャンセル機能	試験に不要な抵抗値を測定値から最大 10Ω までキャンセル。OFF 機能あり。						
	確度	\pm (2 % of reading + 3 m Ω)						
	ホールド機能	試験終了時の測定抵抗値を PASS 判定表	長示中に保持					

^{*1} 出力電圧測定値と出力電流測定値から演算して算出しています。

[判定機能]

項目			TOS9302	TOS9303	TOS9303LC				
			抵抗値、またはセンシング電圧値によっ ブザー音量は PASS、FAIL それぞれ個別 自動試験ではプログラム終了時の判定の	川に 0(OFF) ~ 10 まで設定可能。	折される。				
		判定方法	上限判定基準値(Upper)以上の抵抗値、 接触確認中は判定しない。	上限判定基準値(Upper)以上の抵抗値、またはセンシング電圧値を検出すると UPPER FAIL判定。 接触確認中は判定しない。					
	Upper FAIL	表示部	「Upper-FAIL」が表示される						
		ブザー	オン						
		SIGNAL I/O	STOP 信号が入力されるまで連続で U F	AIL 信号が出力される					
判定動作		判定方法	下限判定基準値(Lower)以下の抵抗値、	またはセンシング電圧値を検出すると	:LOWER FAIL判定。				
	Lower FAIL	表示部	「Lower-FAIL」が表示される						
		ブザー	オン						
		SIGNAL I/O	STOP 信号が入力されるまで連続で L F	AIL 信号が出力される					
		判定方法	試験時間を経過して Upper-FAIL、Low	er-FAIL でなければ PASS 判定。					
		表示部	「PASS」が表示される						
	PASS	ブザー	オン(50 ms 固定)						
	PASS	SIGNAL I/O	Pass Hold で設定した時間まで PASS 信 Pass Hold で Infinity を設定した場合に PASS 信号が出力される。						
	上限判定基準値	(Upper)設定範囲	$0.0001 \Omega \sim 10.0000 \Omega$						
抵抗值判定	下限判定基準値	(Lower)設定範囲	$0.0000 \Omega \sim 9.9999 \Omega$						
	判定確度		\pm (2 % of setting + 3 m Ω)						
	上限判定基準値	(Upper)設定範囲	0.001 V ~ 5.000 V AC/DC						
電圧値判定	下限判定基準値	(Lower)設定範囲	0.000 V ~ 4.999 V AC/DC						
	判定確度		± (2 % of setting + 0.05 V)						
校正			純抵抗負荷を使用して校正(AC の場合は正弦波の実効値で校正)						
接触確認(Con	tact Check)機能		テストリードに電流が流れるのを確認	してから試験開始。(OFF 設定あり)					

[タイマー機能]

項目	TOS9302	TOS9303LC			
電流上昇時間(Rise Time)設定範囲	0.1 s ~ 200.0 s				
電流降下時間(Fall Time)設定範囲 *1					
試験時間(Test Time) 0.1 s ~ 1000.0 s、OFF					
確度	± (100 ppm of setting + 20 ms) (Fall Time は除く)				

^{*1} PASS 判定時のみ有効です。DC 試験時は、本製品内部および EUT の静電容量のため、設定時間中に電圧が下がりきらないことがあります。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■部分放電試験部

[出力機能]

項目			TOS9301PD		
			0.050 kV ~ 5.000 kV		
	出力電圧範囲	分解能	1V		
AC出力部		設定確度	± (1.2 % of setting + 0.02 kV) (無負荷時)		
	最大定格負荷		250 VA (5 kV / 50 mA)		
	最大定格電流		50 mA (出力電圧 0.2 kV以上)		
	出力電圧波形 *1		正弦波		
	山川竜圧波形	ひずみ率	2%以下(出力電圧 0.5 kV以上、無負荷時または純抵抗負荷時)		
	クレストファクタ		√ 2±3%(0.8 kV 以上)		
正極 *1	FT::h*b		50 Hz / 60Hz		
	周波数	確度	± 0.1 %		
	電圧変動率		±3%以下(最大定格負荷→無負荷)		
	出力方式		PWMスイッチング方式		
出力電圧監視标			出力電圧が ± (10 % of setting + 0.05 kV) を越えた場合、出力が遮断され保護機能が作動。		

^{*1} 容量性の負荷に交流電圧を印加すると、負荷の容量分の値によっては無負荷よりも出力電圧が上昇することがあります。さらに、容量の値に電圧依存性のある試料(セラミックコンデンサなど)を負荷に した場合には、波形にひずみが発生することがあります。ただし、試験電圧 1.5 kV の場合には、1000 pF 以下の容量の影響は無視できます。また、本製品の高圧電源部は PWM スイッチング方式のため、 試験電圧が 500 V 以下ではスイッチングノイズ、スパイクノイズの占める割合が大きくなり、試験電圧が低くなるほど波形のひずみも大きくなります。

[測定機能]

項目			TOS9301PD			
	測定範囲		0.00 kV ~ 7.50 kV AC / DC			
	分解能		0.1 V			
5 CT=1	確度 *1		± (1.2 % of reading + 0.05 kV)			
包圧計	応答		真の実効値/平均値応答実効値換算を切り替え可能。			
	心合		別系統に波高値応答(波高値応答は RISE中の絶縁破壊電圧測定用)			
	ホールド機能		試験終了時の測定電圧値を PASS/ FAIL判定表示中に保持。			
	電荷計測方法		IEC60664-1 Edition 3.0に記載の測定原理を採用 *2			
	測定範囲		0 pC ~ 10000 pC			
		100 pCレンジ	0.1 pC			
	測定分解能	1000 pCレンジ	0.1 pC			
		10000 pCレンジ	1 pC			
		100 pCレンジ	\pm (5 % of full scale + 7 pC)			
	確度 *1*3	1000 pCレンジ	\pm (5 % of full scale)			
		10000 pCレンジ	\pm (5 % of full scale)			
	計測間隔		印加電圧の 1サイクルごとに計測して判定。			
	ホールド機能		試験終了時の放電電荷量を PASS判定表示中に保持。			
『荷量測定	被試験物最大静	電容量	10 nF			
3171里州た	ピークホールト	·機能	測定期間中の最大値を保持。			
	フィルタ機能		電荷計測回路にローパスフィルタを入れることが可能。			
	放電開始電圧/	/ 停止電圧測定	あらかじめ設定した電荷量を超える放電を開始した電圧と、放電を停止した電圧を測定			
	从电册和电压/	· · · · · · · · · · · · · · · · · · ·	(IEC60664-1 Edition 3.0に記載の測定原理を採用 *2)。			
	校正(Precalibr	ation)	校正用の内蔵コンデンサ(1000 pF)で校正。			
	パルスカウント	·機能	ハイパスフィルタ通過後のパルス数を計測し、上限判定基準値を超えたら FAIL判定。			
		上限判定基準値の 設定範囲	1~ 100000			
	BPF特性切り替	え機能	電荷計測回路のバンドパスフィルタの特性を切り替え可能			
		中心周波数	100 kHz/ 160 kHz/ 300 kHz			
	カップリングコ		0.01 μF			

ー 1 パルス間隔が 200 μ s 以上の場合 ・ 2 規格に基づいた測定原理(EUT 接地タイプ)、電圧印加テストパターンで試験できますが、測定確度については規格要求に未対応です。・ *3 Band Pass Filter を 160 kHz に設定時。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

[判定機能]

項目			TOS9301PD
			判定時に出力が遮断される。
		判定方法	上限判定基準値以上の電流が検出された。
	Upper FAIL	表示部	「Upper-FAIL (Current)」が表示される。
	(Current)	ブザー	オン
		SIGNAL I/O	STOP信号が入力されるまで連続で U FAIL信号が出力される。
		判定方法	上限判定基準値以上の電荷量が検出された。
	Upper FAIL	表示部	「Upper-FAIL (Coulomb)」が表示される。
	(Coulomb)	ブザー	オン
放電電荷量		SIGNAL I/O	STOP信号が入力されるまで連続で U FAIL信号が出力される。
判定		判定方法	上限判定基準値以上の放電パルス数が検出された。
	Upper FAIL	表示部	「Upper-FAIL (Pulse)」が表示される。
	(Pulse)	ブザー	オン
		SIGNAL I/O	STOP信号が入力されるまで連続で U FAIL信号が出力される。
		判定方法	試験時間を経過して Upper-FAILにならなかった。
		表示部	「PASS」が表示される。
	PASS	ブザー	オン
		SIGNAL I/O	Pass Holdで設定した時間まで PASS信号が出力される。Pass Holdで Infinityを設定した場合には STOP信号が入力されるまで連続で PASS信号が出力される。
電流上限判定基	電流上限判定基準値		50 mA (非校正)
電荷量上限判定基準値設定範囲		設定範囲	1 pC∼ 10000 pC
(Upper Coulo	(Upper Coulomb) 確度		電荷量測定確度に準じる
パルスカウント	- 判定基準値		1~100000(非校正)
(Upper Pulse	Count)設定範囲		T. ~ T00000 (3-L4XTE)

[タイマー機能]

項目	TOS9301PD			
電圧上昇時間(Rise Time)設定範囲	0.1 s ~ 200.0 s			
電圧降下時間(Fall Time)設定範囲 *1	0.1 s ~ 200.0 s、OFF			
試験時間(Test Time)設定範囲	0.1 s ~ 1000.0 s、 OFF			
確度	± (100 ppm of setting + 20 ms) (Fall Time は除く)			

^{*1} PASS 判定時のみ有効です。

[その他の仕様]

項目		TOS9301PD
アナログモニタ *1		電流波形、電圧波形、放電電荷量に応じた電圧信号が出力される。
	V	電圧波形: Scale 1kV/1V
	Qpd*2	放電電荷量: Scale 測定レンジのフルスケール /10 V
	Ipd*3	部分放電電流波形

17

¹ モニタ用の信号は、シャシ(アース)から絶縁されて出力されます。
*1 PD 試験時は、モニタ用信号のコモンはシャシ(アース)に接続されます。Qpd 波形はピーク検出回路の出力波形になり、一周期ごとにリセットされます。Ipd 波形は TOS93 シリーズの計測部フィルタ を通過したあとの放電波形になります。このため実際の放電波形の周波数特性によりスケールが変化します。
*3 Ipd 波形は、実際の放電波形が TOS9301PD の計測部フィルタを通過したあとの波形になります。このため、放電波形の周波数特性によりスケールが変化します。

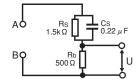
WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■漏れ電流試験部

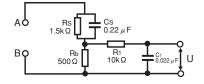
[測定機能]

項目				TOS9303LC			
	TC			接触電流(Touch Current)の測定			
		測定方式		人体のインピーダンスを代表する測定回路網(ネットワーク)を利用し、 基準抵抗の電圧降下を測定することにより接触電流が算出される			
			Enc - Pe	A 端子: 測定用端子(EUT の外装への接続用) B 端子: 開放			
		プローブ 設定	Enc - Enc	A 端子、B 端子: 測定用端子(EUT の外装への接続用)			
		DO TO	Enc - Liv Enc - Neu	A 端子: 測定用端子(EUT の外装への接続用) B 端子: 開放			
測定項目				保護導体電流(Protective Conductor Current)の測定			
別是項目	PCC	測定方式		保護接地線の途中に挿入した基準抵抗の電圧降下を測定することにより、 保護導体電流が算出される。測定インピーダンスは 150 Ω。			
				患者漏れ電流(Patient Current)の測定			
	Patient	測定方式		IEC60601 に準拠したネットワークを利用し、基準抵抗の電圧降下を測定することにより 患者漏れ電流が算出される			
				A 端子、B 端子間に流れる電流、または印加されている電圧を測定(同時測定不可)。			
	Meter	測定方式	電流測定	人体のインピーダンスを代表する測定回路網(ネットワーク)を利用し、 基準抵抗の電圧降下を測定することにより A 端子と B 端子間の電流が算出される。			
			電圧測定	A 端子と B 端子間に印加されている電圧を測定。			
·	•		DC	交流成分を除去して直流成分のみを測定			
電流測定モー	ド		RMS	真の実効値を測定(AC または AC+DC を切り替え)			
			Peak *1	波形のピーク値を測定			

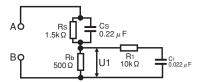
^{*1} 電源ライン波形、本製品と EUT 間の配線環境などの影響により電流測定値が安定しない場合があります。

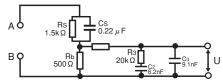

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

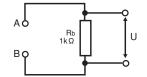
[測定回路網(ネットワーク)]

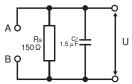

項目		TOS9303LC		
	A(IEC60990 準拠) *1	(1.5 kΩ // 0.22 μF) + 500 Ω , 基本測定素子 : 500 Ω		
	B(IEC60990 準拠)	$(1.5$ k Ω // $(0.22$ $\mu F)$ + 500 Ω // $(10$ k Ω + 22 nF)、基本測定素子 : 500 Ω 、電圧測定 U1、U3 切り替え可能		
	C(IEC60990 準拠)	$(1.5~{\rm k}\Omega~//~0.22~{\rm \mu F})~+~500~\Omega~//~(10~{\rm k}\Omega~+~(20~{\rm k}\Omega~+~6.2~{\rm nF})~//~9.1~{\rm nF})$ 、基本測定素子 : $500~\Omega$ 、電圧測定 U1、U3 切り替え可能		
	D(電気用品安全法、その他)	1 kΩ、基本測定素子: 1 kΩ		
	E(電気用品安全法)	1 kΩ // (10 kΩ + 11.225 nF + 579 Ω)、基本測定素子: 1 kΩ		
ネットワーク	F(UL、その他)	1.5 kΩ // 0.15 μF、基本測定素子 : 1.5 kΩ		
	G	2 kΩ、基本測定素子: 2 kΩ		
	H(IEC61010-1)	375 Ω // 0.22 μF + 500 Ω、基本測定素子: 500 Ω		
	I(Patient、IEC60601-1wet)	1 kΩ // 10 kΩ + 0.015 μF、基本測定素子 : 1 kΩ		
	J(スルー)	電圧計校正用		
	PCC-1	150 Ω、基本測定素子: 150 Ω		
	PCC-2 (IEC60598-1)	150 Ω // 1.5 μF、基本測定素子: 150 Ω		
ネットワーク定	数許容差	抵抗: ± 0.1%、コンデンサ 0.15 μF: ± 2%、その他: ± 1%		

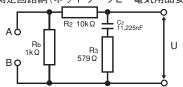
^{*1} 電源ライン波形、本製品と EUT 間の配線環境などの影響により電流測定値が安定しない場合があります。

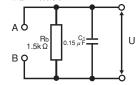

●測定回路網(ネットワークA IEC60990 図3 U1測定に準拠)

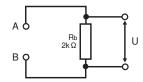

●測定回路網(ネットワークB IEC60990 図4 U2測定に準拠)

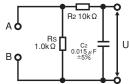

●測定回路網(ネットワークB1 IEC60990 図4 U1測定に準拠)

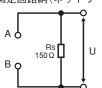

●測定回路網(ネットワークC IEC60990 図5 U3測定に準拠)


●測定回路網(ネットワークD 電気用品安全法など)


●測定回路網(ネットワークPCC-2 IEC60598-1)


●測定回路網(ネットワークE 電気用品安全法など)


●測定回路網(ネットワークF IEC61029など)


●測定回路網(ネットワークG IEC60745など)

●測定回路網(ネットワークI IEC60601-1など)

●測定回路網(ネットワークPCC-1)

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

[測定部] ネットワークにより範囲が異なります。

項目				TOS9303LC			
	Range 1			DC, RMS: 1.00 µA (min.) ~ 200.00 µA (max)、Peak: 1.00 µA (min.) ~ 282.00 µA (max)			
	Range 2			DC, RMS: 12.50 μA (min.) ~ 2000.0 μA (max)、Peak: 17.50 μA (min.) ~ 2830.0 μA (max)			
	Range 3			DC, RMS: 125.0 μ A (min.) \sim 20.000 mA (max) \sim Peak: 175.0 μ A (min.) \sim 28.300 mA (max)			
	Range 4			DC, RMS: 1.250 mA (min.) \sim 100.00 mA (max) \sim Peak: 1.750 mA (min.) \sim 100.00 mA (max)			
	レンジ切り	· 替え		Auto / Fix 選択可能。各レンジで測定範囲を外れた場合には、測定値の点滅で警告。			
測定範囲 *1		Auto		測定値に応じてレンジを自動設定			
<i>,</i> 则		Fix		TC、PCC 測定では UPPER 設定値に応じて測定レンジを自動設定。 Meter 測定では任意のレンジに固定。			
	帯域切りを	 すえ		医用機器等の測定で要求される、0.1 Hz からの測定ができる帯域に拡張可能。			
		Normal		通常の測定帯域 15 Hz ~ 1 MHz			
		Expand		帯域を 0.1 Hz ~ 1 MHzまでの測定範囲に拡張			
		DC		\pm (5.0 % of reading + 2 μ A)			
			0.1 Hz≦ f< 15 Hz	\pm (10.0 % of reading + 2 μ A)			
		RMS	15 Hz ≦ f ≦ 100 kHz	\pm (7.0 % of reading + 2 μ A)			
			100 kHz < f ≦ 1 MHz	± (10.0 % of reading + 2 μA)			
	Range 1		0.1 Hz ≦ f < 15 Hz	\pm (10.0 % of reading + 10 μ A)			
			15 Hz ≦ f ≦ 1 kHz	± (10.0 % of reading + 10 μA)			
		Peak	1 kHz< f ≦ 100 kHz	\pm (10.0 % of reading + 10 μ A)			
			100 kHz < f ≦ 1 MHz	\pm (20.0 % of reading + 10 μ A)			
		DC		\pm (5.0 % of reading + 20 μ A)			
	Range 2	RMS	0.1 Hz ≦ f < 15 Hz	$\pm (10.0\% \text{ of reading} + 10 \mu\text{A})$			
			15 Hz ≦ f ≦ 100 kHz	\pm (7.0 % of reading + 8 μ A)			
			100 kHz < f ≦ 1 MHz	\pm (10.0 % of reading + 10 μ A)			
		Peak	0.1 Hz ≦ f < 15 Hz	\pm (10.0 % of reading + 10 μ A)			
			15 Hz ≦ f ≦ 1 kHz	\pm (10.0 % of reading + 10 μ A)			
			1 kHz< f ≦ 100 kHz	\pm (10.0 % of reading + 10 μ A)			
総合確度 *2			100 kHz < f ≦ 1 MHz	± (20.0 % of reading + 10 μA)			
(ネットワーク A、 B、C使用時) *3		DC	'	± (5.0 % of reading + 50 μA)			
Dr Clx/IIPI/ 3			0.1 Hz ≦ f < 15 Hz	\pm (10.0 % of reading + 20 μ A)			
		RMS	15 Hz ≦ f ≦ 100 kHz	\pm (7.0 % of reading + 20 μ A)			
			100 kHz < f ≦ 1 MHz	\pm (10.0 % of reading + 20 μ A)			
	Range 3		0.1 Hz ≦ f < 15 Hz	\pm (10.0 % of reading + 50 μ A)			
		David.	15 Hz \leq f \leq 1 kHz	\pm (7.0 % of reading + 50 μ A)			
		Peak	1 kHz< f ≦ 100 kHz	\pm (10.0 % of reading + 50 μ A)			
			100 kHz < f ≦ 1MHz	\pm (20.0 % of reading + 50 μ A)			
		DC		\pm (5.0 % of reading + 0.5 mA)			
			0.1 Hz ≦ f < 15 Hz	± (10.0 % of reading + 0.2 mA)			
		RMS	15 Hz ≦ f ≦ 100 kHz	± (7.0 % of reading + 0.2 mA)			
	Dance 4		100 kHz < f ≦ 1 MHz	\pm (10.0 % of reading + 0.2 mA)			
	Range 4		0.1 Hz ≦ f < 15 Hz	\pm (10.0 % of reading + 0.5 mA)			
		Decl	15 Hz ≦ f ≦ 1 kHz	\pm (7.0 % of reading + 0.5 mA)			
		Peak	1 kHz< f ≦ 100 kHz	\pm (10.0 % of reading + 0.5 mA)			
			100 kHz < f ≦ 1 MHz	\pm (20.0 % of reading + 0.5 mA)			
入力抵抗				$1\mathrm{M}\Omega\pm1\%$			
入力容量				200 pF 未満(内部電圧計の入力容量 100 pF 以下)			
コモンモード除去	比			10 kHz 以下:60 dB 以上/10 kHz~1 MHz: 40 dB以上			
オフセットキャン・	セル機能			試験に不要な電流値を測定値から最大 10 mA までキャンセル。 OFF 機能あり。			

- ネットワーク I を選択した場合は、電圧計の帯域拡張が可能。 0.1 Hz \le f < 1.5 Hz は電圧計の帯域拡張 (VoltMeter BandWidth) を Expand に設定している場合。 120 秒以上の試験時間が必要。本製品の電圧計確度を基準に、ネットワーク A、B、C を使用した測定において電流換算した値です。 A、B、C 以外のネットワークを使用する場合は、下記のとおり計算してください。 ネットワーク D、E、I では、土(\square % of reading + \blacksquare A)の \blacksquare の部分が 1/2 の値になります。 ネットワーク F では、上記 \blacksquare の部分が 1/3 の値になります。 ネットワーク G では、上記 \blacksquare の部分が 1/4 の値になります。 ネットワーク G では、上記 \blacksquare の部分が 1.3 倍の値になります。 ネットワーク H では、上記 \blacksquare の部分が 3.3 倍の値になります。 ネットワーク H では、上記 \blacksquare の部分が 3.3 倍の値になります。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

[判定機能] ネットワークにより範囲が異なります。

項目			TOS9303LC			
			判定遅延時間(Judge Delay)後に判定開始。ブザー音量は PASS、FAIL それぞれ個別に 0 (OFF) ~ 10 まで設定可能。自動試験ではプログラム終了時の判定のみブザーが有効。			
		判定方法	上限判定基準値 (Upper) 以上の電流を検出すると UPPER FAIL判定。			
	I Innar FAII	表示部	「Upper-FAIL」が表示される			
	Upper FAIL	ブザー	オン			
		SIGNAL I/O	STOP 信号が入力されるまで連続で U FAIL 信号が出力される			
		判定方法	下限判定基準値 (Lower) 以下の電流を検出すると LOWER FAIL判定。			
判定動作	Lower FAIL	表示部	「Lower-FAIL」が表示される			
	Lower FAIL	ブザー	オン			
		SIGNAL I/O	STOP 信号が入力されるまで連続で L FAIL 信号が出力される			
		判定方法	試験時間を経過して Upper-FAIL、Lower-FAIL でなければ PASS 判定。			
		表示部	「PASS」が表示される			
	PASS	ブザー	オン(50 ms 固定)			
		SIGNAL I/O	Pass Hold で設定した時間まで PASS 信号が出力される。Pass Hold で Infinity を設定した場合には STOP 信号が入力されるまで連続で PASS 信号が出力される。			
	RANGE 1		DC, RMS: 0.1 μA (min.) ~ 200 μA (max)、Peak: 0.1 μA (min.) ~ 282 μA (max)			
	RANGE 2		DC, RMS: 15.1 μA (min.) ~ 2.00 mA (max)、Peak: 21.3 μA (min.) ~ 2.83 mA (max)			
Upper設定範囲	RANGE 3		DC, RMS: 151 µA (min.) ~ 20.00 mA (max)、Peak: 213 µA (min.) ~ 28.3 mA (max)			
	RANGE 4		DC, RMS: 1.51 mA (min.) ~ 100 mA (max)、Peak: 2.13 mA (min.) ~ 100 mA (max)			
Lower設定範囲	•		Upper設定範囲から – 1digitの値			
判定確度			総合確度に準ずる(総合確度の reading を setting に読み替えてください)			

[タイマー機能]

項目		TOS9303LC
物ウ'屋75 吐用 (1 d D - l)	設定範囲	1.0 s ~ 1000.0 s, OFF
判定遅延時間(Judge Delay)	確度	± (100 ppm of setting + 20 ms)
=+F◆中田 (To ob Time o)	設定範囲	1 s ~ 1000 s、 OFF
試験時間(Test Time)	確度	± (100 ppm of setting + 20 ms)

[その他の仕様]

しその他の仕	.13K]						
項目			TOS9303LC				
南に体の地質			EUT に供給する電圧とその際の測定電流値を基に、あらかじめ設定した電源電圧(Conv Voltage)の値で換算した電流値が表示される。(メータモードでは無効)				
電圧値の換算		設定範囲	80.0 V ~ 300.0 V、OFF				
	分解能		0.1 V				
電源ラインの材	亟性(Polarity)選択		EUT に供給する電源ラインの極性を正相/逆相から選択。				
単一故障モート	ヾ(Condition)選択		EUT の単一故障モードを、正常(Normal)、ニュートラル線の断線(Fault Neu)、保護接地線の断線(Fault PE)から選択。				
接地チェック			外装と電源ライン間の接触電流試験で、EUT の外装が接地されている場合は CONTACT FAIL が発生。				
測定チェック			A 端子、B 端子間を短絡させて測定機能をチェックし、異常があれば保護機能が作動。				
		測定範囲	80.0 V ~ 250.0 V				
電源電圧測定力	AC LINE(EUT)	分解能	0.01 V				
		確度	± (3 % of reading + 1 V)				
		測定範囲	0.1 A ~ 15.00 A				
電源電流測定	AC LINE (EUT)	分解能	0.001 A				
		確度	± (5 % of reading + 30 mA)				
高上测点/去数	売 士\	測定範囲	10 W ~ 1500 W				
電力測定(有効	電刀)	確度	± (5 % of reading + 8 W) (電源電圧が 80 V 以上、負荷力率 1 にて)				
		DC	10.00 V ~ 300.0 V				
	測定範囲	RMS	10.00 V ~ 300.0 V				
		Peak	15.00 V ~ 430.0 V				
A端子、	入力インピーダン	ノス	約 40 ΜΩ				
B 端子間 電圧測定	確度 *1		± (3 % of reading + 2 V)(測定レンジは AUTO に固定)				
电压点定	SELV 検出		SELV を検出する電圧を設定し、値を超えたら DANGER ランプが点灯。				
		設定範囲	10.0 V ~ 99.9 V、OFF				
		分解能	0.1 V				
	中松高压	A 端子一 B 端子間	250 V				
	定格電圧	端子-シャシ間	250 V				
別中継マ	定格電流		100 mA				
測定端子	測定カテゴリ		CAT-II				
	有効端子表示		測定に有効な端子が表示部に表示される				
	110 % 端子		AC LINE IN インレットに入力された電圧を供給する端子				
	公称電圧範囲		100 V ~ 240 V、50 Hz ∕ 60 Hz				
	入力電圧範囲(許	容電圧範囲)	85 Vac ~ 250 Vac				
EUT 用電源	定格出力容量		1500 VA				
	最大使用電流		15 A (約 15.7 A で過電流保護が作動)				
	突入電流		最大 70 Apeak (20 ms 以内)				

^{*1} A端子、B端子間が開放の状態で電圧測定した場合は、誘導電圧の影響を受けやすくなります。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■インターフェース(共通)

項目			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC	
REMOTE			MINI DIN 9ピンコネクタ。下記のオプションを接続して試験開始 /終了のリモートコントロール。 ・リモートコントロールボックス RC01-TOS、RC02-TOS ・高圧テストプローブ HP01A-TOS、HP02A-TOS(ただし、試験電圧が 4 kVac、5 kVdc以下の場合)						
SIGNAL I/O			D-sub 37 ピンコネク	ウタ 。					
	機能		試験の開始/終了、		ップメモリー呼び出 :態のモニタ、試験ス :のモニタ			自動試験のステップ	
	入力仕様				入力端子は抵抗によ 価。	り +12 V にプルアッ	プ。		
		ハイレベル入力電圧	11 V ~ 15 V						
		ローレベル入力電圧	0 V~ 4 V						
		ローレベル入力電流	最大 - 5 mA						
		入力時間幅	最小 5 ms						
		出力方式	オープンコレクタ出	力(4.5 Vdc ~ 30 Vd	c)				
	出力仕様	出力耐電圧	30 Vdc						
	五刀任塚	出力飽和電圧	約 1.1 V(25 °C)						
		最大出力電流	400 mA(TOTAL)						
STATUS O	UT		オプション製品用の出力端子。						
	+ 端子(赤)		+24 V を出力。出力条件はコンフィグ設定の Status Output で設定可能。						
	- 端子(黒)		+24 V 回路コモン。						
SCANNER	!		MINI DIN8 ピンコネクタ。オプションの高電圧スキャナ TOS9320 用端子。最大接続台数は 4 台 16 チャンネル。						
USB(ホス	F)		標準 A タイプソケット。接続可能なメモリは FAT32、32 GB 以下。USB2.0 仕様に準拠、通信速度 480 Mbps (High speed)						
リモートコ	コントロール		電源のオン/オフ、キーロック、自動試験以外の全機能をリモートコントロール可能。						
	RS232C	ハードウェア	D-sub9 ピンコネクタ (EIA-232D に準拠) 通信速度: 9600 / 19200 / 38400 / 57600 / 115200 bps データ長: 8 bit、ストップビット: 1 bit、パリティ: なし、フロー制御: なし/ CTS-RTS						
		メッセージターミネータ	受信時 LF、送信時 LF						
		ハードウェア	標準 B タイプソケッ	/ト、USB2.0 仕様に	準拠、通信速度 480 N	Mbps (High Speed)			
	USB (デバイス)	メッセージターミネータ	受信時: LF または E	OM、送信時: LF + E	ОМ				
	() //-1 //	デバイスクラス	USBTMC-USB488 7	デバイスクラス仕様に	準拠。				
		ハードウェア	IEEE 802,3 100Base	-TX / 10Base-T Ethe	rnet、Auto-MDIX 対	応、IPv4, RJ-45 コネ	クタ		
	LAN	対応規格	LXI 1.5 Core Specifi	cation 2011					
	LAN	通信プロトコル	VXI-11、HiSLIP、SO	CPI-RAW、SCPI-Teln	et				
		メッセージターミネータ	VXI-11、HiSLIP: 受信時 LF または END、送信時 LF + END 、SCPI-RAW: 受信時 LF、送信時 LF						
表示部			7 インチ LCD						

■その他の機能(共通)

項目		TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC				
自動試験		ACW、DCW、IR、E	ACW、DCW、IR、EC を組み合わせて自動実行。LC の場合は TC、PCC、Patientのみで組み合わせが可能。								
= > = > 4 //	セットアップメモリ	試験条件(ACW、DC	試験条件(ACW、DCW、IR、EC、LC、PD)を 51 通りまで保存。								
試験条件 メモリー	プログラムメモリ	プログラム(ACW、[プログラム (ACW、DCW、IR、EC、PD) の組み合わせを 100 ステップ、100 通りまで保存。								
7.09	プログラムメモリ(LC)	プログラム(TC、PC	C、Patient) の組み台	合わせを 100 ステッフ	゚、100 通りまで保存	0					
試験結果メ	モリー	単独試験、自動試験 CSV 形式で USB メモ		1000 個まで記録。電	記源をオフにすると ク	⁷ リアされる。					
システムク	'ロック	校正日時、試験実施	日時を記録								
	記録可能日時	2038年まで									
	校正期限設定	設定した期限を過ぎると電源オン時に警告。警告時に保護機能を作動させるか、表示部の警告表示のみにするか選択可能。									
測定値の表	示	測定値の最大値/最	測定値の最大値/最小値を表示可能。								
	通常	試験中に測定値を表	試験中に測定値を表示。最大値/最小値は保持しない。								
	最大値/最小値表示		耐電圧(ACW / DCW)試験では電流測定値の最大値、絶縁抵抗(IR)試験では抵抗測定値の最小値、アース導通(EC)試験では抵抗測定値または電圧測定値の最大値を表示。								
	Double Action	STOP スイッチを押	STOP スイッチを押すと表示部に 0.5 秒間「READY」と表示され、その間に START スイッチを押したときのみ試験を開始。								
試験の開始 方法	Momentary	START スイッチを押	している間のみ試験								
ЛД	Start Long	START スイッチを 1	秒以上押したときの	み試験を開始。							
PASS 判定の表示時間 (Pass Hold)		PASS 判定結果の表現 設定。	PASS 判定結果の表示を保持する時間 $(0.05~\mathrm{s}\sim 10.00~\mathrm{s})$ か、または STOP スイッチが押されるまで保持 (Infinity) するかを設定。								
STOP 信号	の無効化(Fail Mode)	SIGNAL I/Oコネクタと	SIGNAL I/Oコネクタと REMOTE コネクタに接続した機器から、FAIL 判定結果と PROTECTION 状態が解除できないように設定可能。								
キー操作の	ロック(Key Lock)	キー操作をロックし	キー操作をロックして、設定値の変更、メモリやプログラムの上書きなどの誤操作を防止。								

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■その他の機能(共通)

項目	TOS9300 TOS9301 TOS9301PD TOS9302 TOS9303 TOS9303LC						
保護機能	試験中に保護機能が作動した場合は、即時に出力が遮断されて試験が停止する。 LC 試験の場合は、EUT への給電が中され、A 端子、B 端子間が開放される。保護機能が作動する条件は下記のとおり。						
INTERLOCK	インターロックが作動中。						
POWER SUPPLY	電源部に異常がある。						
OUTPUT ERROR	下記の規定の範囲を超える出力電圧が検出された。 ACW、DCW、IR 試験、PD 試験: ±(10% of setting + 50 V) EC 試験: ±(10% of setting + 2 A)						
OVER LOAD	下記の規定の範囲を超える出力電力または出力電流が検出された。 ACW: 550 VA、DCW: 110 Wまたは 50 mA、IR(7200 V試験): 110 Wまたは 25 mA、IR(- 1000 V試験): 2 mA、 EC: 240 VA、LC: AC LINE OUT の電流が約 15.7 A を超えたとき、または電力が 1600 VA を超えたとき。						
OVER HEAT	本製品の内部温度が異常に上昇した。						
OVER RATING	耐電圧試験時に、出力電流が出力時間の制限を超えた。 アース導通試験時に、出力電流が出力時間の制限を超えた。						
CAL	設定した校正期限が過ぎた。						
REMOTE	REMOTE コネクタの脱着が行われた。						
SIGNAL I/O	SIGNAL I/O コネクタの ENABLE 信号に変化があった。						
COMMUNICATION	内部通信に異常があった。						
OVER RANGE	測定レンジの最大値を超える値が測定された。						
MEASURE	LC 試験の測定チェックで異常が検出された。						
SHORT	LC 試験でリレー動作の異常が検出された。						
EARTH FAULT	接地方式(GND)の設定が Guard の場合に、本製品の高電圧出力部から接地部に異常な電流が流れた。						
SCAN I/F	スキャナ動作中にインターフェースケーブルが外れた。または、チャンネル設定されたスキャナが検出されなかった。						

■一般仕様 (共通)

項目			TOS9300	TOS9301	TOS9301PD	TOS9302	TOS9303	TOS9303LC		
バックアッ	プ電池寿命		3年(25°Cにて)							
	設置場所		屋内、高度 2000 m まで							
	仕様保証	温度	5℃~35℃(部分放電試験は18℃~28℃)							
	範囲	湿度	20 %rh ~ 80 %rh(部分放電試験は 20 %rh ~ 70 %rh) (結露なし)							
環境	動作範囲	温度	0 °C∼ 40 °C							
	割TF配出	湿度	20 %rh ~ 80 %rh (約	吉露なし)						
	/0.4	温度	- 20 °C∼ 70 °C							
	保存範囲	湿度	90 %rh 以下(結露な	L)						
	公称電圧範囲	囲(許容電圧範囲)	100 V ~ 120 V / 20	0 V ~ 240 V (90 V ~	132 V / 170 V ~ 250) V)				
高 语	沙弗毒士	無負荷時(READY 状態)	100 VA 以下							
電源	消費電力	定格負荷時	最大 800 VA							
	許容周波数筆	· 范囲	47 Hz ∼ 63 Hz							
絶縁抵抗(A	C LINE- シャシ	'問)	30 MΩ以上(500 Vdo	c)						
耐電圧(AC	LINE- シャシ間])	1500 Vac、1 分間、	20 mA 以下						
接地連続性			25 Aac / 0.1 Ω以下	-						
質量			TOS9300: 約 17 kg、TOS9301: 約 18 kg、TOS9301PD: 約 22 kg、 TOS9302: 約 20 kg、TOS9303: 約 21 kg、TOS9303LC: 約 22 kg							
付属品	付属品			R長約 2.5 m: 仕向けが TL31-TOS(1組)、SI (1冊)、CD-ROM(1札 (1枚)※1: TOS9300 ストリード ^{#2} (1組)》 漏れ電流試験用テス	GNAL I/O用プラグ(1 対)、安全のために(1- りには付属しません ※ 2: TOS9302、TOS	組)、高電圧危険シー 冊)、 9303、TOS9303LCの	み			
電磁適合性(EMC) *1 *2			以下の指令および規格の要求事項に適合 EMC 指令 2014/30/EU EN 61326-1 (Class A *3)、EN 55011 (Class A *3、Group 1 *4)、EN 61000-3-2、EN 61000-3-3 適用条件 本製品に接続するケーブルおよび電線は、すべて 2.5m 未満を使用 SIGNAL I/O を使用する場合には、シールドケーブルを使用 高電圧テストリード TL31-TOS を使用 試験器の外部で放電がない状態							
安全性 *1			以下の指令および規 低電圧指令 2014/35	格の要求事項に適合 /EU <mark>*2</mark> 、EN 61010-1		2*6)				

- ** 1 特注品、改造品には適用されません。
 ** 2 本体に CE マーキング/ UKCA マーキングの表示のあるモデルに対してのみ。
 ** 3 本製品は Class A 機器です。工業環境での使用が意図されています。本製品を住宅地区で使用すると干渉の原因となることがあります。そのような場合には、ラジオやテレビ放送の受信干渉を防ぐために、ユーザによる電磁放射を減少させる特別な措置が必要となることがあります。
 ** 4 本製品は Group 1 機器です。本製品は、材料処理または検査/分析のために、電磁放射、誘導および/または静電結合の形で意図的に無線周波エネルギーを発生/使用しません。
 ** 5 本製品は Class 1機器です。本製品の保護導体端子を必ず接地してください。正しく接地されていない場合、安全性は保障されません。
 ** 6 汚染とは、絶縁耐力または表面抵抗率の低下を引き起こし得る異物(固体、液体、または気体)が付着した状態です。汚染度 2 は、非導電性の汚染だけが存在し、ときどき、結露によって一時的に導電性になり得る状態を想定しています。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■高電圧スキャナ

[基本性能]

項目		TOS9320
最大使用電圧	AC	5 kV
取入使用电压	DC	7.2 kV
チャンネル数		4(各チャンネルを High、Low または Open に設定可能)
最大接続		4台: TOS93 シリーズ試験器への接続順でチャンネル番号が決定される。 1 台目: CH 1 ~ CH 4、2 台目: CH 5 ~ CH 8、3 台目: CH 9 ~ CH 12、4 台目: CH 13 ~ CH 16
接触確認機能		あり
	DANGER	TOS9300シリーズ試験器と連動して点灯
表示 CHANNEL		各チャンネルの設定を点灯する色によって示す。 赤:High 緑:Low オレンジ:コンタクトチェック中 消灯:Open
	EXTERNAL	外部コントロールがオン時に点灯
	POWER	電源オン時に点灯

[インターフェースとその他の機能]

頁目			TOS9320	
制御切り替え			EXTERNAL I/O スイッチで、下記の制御を切り替え。 ON: CONTROLLER INTERFACE による外部制御 OFF: TOS93シリーズ試験器による制御	
CONTROLLERI	NTERFACE	(外部制御)	D-sub 25 ピンコネクタ。	
	機能		各チャンネルを High または Low に設定、または全チャンネルを Openに設定可能。各チャンネルの設定を出力。	
			入力信号はすべてローアクティブ制御。入力端子は抵抗により +12 V にプルアップ。 入力端子の開放はハイレベルの入力と等価。	
	入力	ハイレベル入力電圧	11 V ~ 15 V	
		ローレベル入力電圧	0 V ~ 4 V	
		ローレベル入力電流	最大 - 5 mA	
		入力時間幅	最小 5 ms	
		出力方式	オープンコレクタ出力 (4.5 Vdc ~ 30 Vdc)	
	出力	出力耐電圧	30 Vdc	
	出力	出力飽和電圧	約 1.1 V(25 °C)	
		最大出力電流	400 mA(TOTAL)	
「OS9300シリー	ズ試験器イ	´ンターフェース	MINI DIN 8 ピンコネクタ、最大 4 台 16 CH までを確度保証	

[一般仕様]

項目			TOS9320					
	設置場所		屋内、高度 2000 m まで					
	上		5°C~35°C					
	江依休証製出	湿度	20 %rh ~ 70 %rh (結露なし)					
環境	新/左答回	温度	0 °C~ 40 °C					
	動作範囲	湿度	20 %rh~80 %rh(結露なし)					
	/0.4	温度	- 20 °C ~ 70 °C					
	保存範囲	湿度	90 %rh 以下(結露なし)					
	公称電圧範囲(許額	· 容電圧範囲)	100 Vac ~ 240 Vac (90 Vac ~ 250 Vac)					
電源	消費電力		最大 50 VA					
	許容周波数範囲		47 Hz ∼ 63 Hz					
絶縁抵抗(ACL	.INE -シャシ間)		30 MΩ以上(500 Vdc)					
耐電圧(AC LIN	E -シャシ間)		1500 Vac、1 分間、20 mA 以下					
接地連続性			25 Aac / 0.1 Ω以下					
質量			約 8 kg					
付属品			電源コード (1本、線長約 2.5 m: 仕向け先によってものが異なります。) 高電圧テストリード TL31-TOS (赤 8本)、高電圧並列接続用リード TL33-TOS (1組)、インターフェースケーブル (1本)、 CONTROLLER INTERFACE用プラグ (1組)、高電圧危険シール (2枚)、チャンネル表示シールパネル面用 (1枚)・テストリード用 (1枚)、ユーザーズマニュアル (1冊)、安全のために (1冊)					
電磁適合性(EM	1C) *1*2		以下の指令および規格の要求事項に適合 EMC 指令 2014/30/EU、EN 61326-1 (Class A * 3)、EN 55011 (Class A * 3、Group 1 * 4)、 EN 61000-3-2、EN 61000-3-3 適用条件: 本製品に接続するケーブルおよび電線は、すべて 2.5 m 未満を使用 CONTROLLER INTERFACE への接続にはシールドケーブルを使用 高電圧テストリード TL31-TOS を使用、試験器の外部で放電がない状態					
安全性 *1			以下の指令および規格の要求事項に適合 低電圧指令 2014/35/EU *2、EN 61010-1 (Class I *5 , 汚染度 2 *6)					

- *1 特注品、改造品には適用されません。

 *2 本体に CE マーキング / UKCA マーキングの表示のあるモデルに対してのみ。

 *3 本製品は Class A 機器です。工業環境での使用が意図されています。本製品を住宅地区で使用すると干渉の原因となることがあります。そのような場合には、ラジオやテレビ放送の受信干渉を防ぐために、ユーザによる電磁放射を減少させる特別な措置が必要となることがあります。

 *4 本製品は Class A 機器です。本製品は、材料処理または検査 / 分析のために、電磁放射、誘導および / または静電結合の形で意図的に無線周波エネルギーを発生 / 使用しません。

 *5 本製品は Class I 機器です。本製品の保護学体端子を必ず接地してください。正しく接地されていない場合、安全性は保障されません。

 *6 汚染とは、絶縁耐力または表面抵抗率の低下を引き起こし得る異物(固体、液体、または気体)が付着した状態です。汚染度 2 は、非導電性の汚染だけが存在し、ときどき、結露によって一時的に導電性になり得る状態を想定しています。

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■外形寸法図(単位:mm)

TOS9300 TOS9301 TOS9303LC 268.8 (⊕ ()-**(**□⊕ **(+)**-MAX410 370 MAX440 430 MAX20 0 **○** ○ ○ ○ □ 単位:mm 単位:mm TOS9301PD TOS9320 4 1 (‡) MAX565 525 MAX390 MAX5 370 0 上 単位:mm 単位: mm TOS9302 TOS9303 **(**+ +) MAX440 430 **○** ○ ○

単位:mm

バルに使える耐電圧・絶縁抵 抗試験のスタンダードモデル

TOS5301

TOS5302

USB DRIVERS (E UK

AC耐電圧·絶縁抵抗試験器

TOS5302 -------------------------------標準価格¥310,000

AC/DC耐電圧試験器

TOS5301 ---------------------------------標準価格¥270,000 (稅込¥297,000)

AC耐電圧試験器

(税込¥242,000)

操作性・確実性・安全性を徹底した 低価格な新スタンダードモデルです

TOS5300シリーズは、電気製品の安全確保に必要とされている 4つの試験の中で、耐電圧試験、絶縁抵抗試験をするための試験器です。出力は 5kV/ 100mA(AC)、6kV/ 10mA(DC) で、IEC、EN、UL、VDE、JISなど各国の安全規格および電気用品安全法の要求事項に基づく電子機器、電子部品の耐電圧/絶縁抵抗試験が可能です。また、新開発のスイッチングアンプを採用することにより試験電圧の安定性を向上。ACライン電圧や周波数が変化しても出力電圧を一定に保つことができるため、電源環境が不安定な地域でも安定した試験が行えます。様々なテストニーズに対応できる機能装備も充実。操作性・確実性・安全性を徹底した低価格なスタンダードモデルです。

- ●高安定な出力を実現するPWMアンプ方式
- ●5 kV/100 mA(500 VA)のAC耐電圧試験
- ●6 kV/最大出力50 WのDC耐電圧試験器(TOS5301)
- ●25 V~1000 V(7ステップ)、500 V以上、 ~5.00 GΩの絶縁抵抗試験
- ●高精度計測 ±1.5% of reading (電圧計500 V以上、電流計1 mA以上にて)
- ●ライズタイム/フォールタイムコントロール
- ●キーロック&操作部カバー
- ●USBインターフェース搭載

26

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

基本性能

常に安定した出力でAC耐電圧試験を実現![入力電圧変動率±0.3%]

一般的な耐電圧試験器は、ACラインの入力電圧をスライドトランスを使い昇圧して出力しています。このスライドトランス方式では入力電圧の変動が出力に影響するため、正しく試験できないことがあります。歪んだ電圧を被試験物に印加する事は新品不良の原因を作ってしまう(部品劣化の加速)場合もあるのです。TOS5300シリーズは高効率PWMアンプを内蔵しており、ACラインの変動に影響を受けない安定した高電圧を出力できますので、電圧変動の大きい地域でも『安心』して、『安定』した信頼性の高い『安全』な試験が可能です。

高精度・高分解能・高速判定を実現

電圧計は $\pm 1.5\%$ of reading (500V以上)/最小分解能1V、電流計は $\pm 1.5\%$ of reading (1mA以上)/最小分解能 $1\mu A$ と高確度・高分解能0True RMS計測回路を搭載しています。また、オートレンジ機能を搭載し、下限判定確度も上限判定確度と同等の性能を実現したため、テストリードの未接続や接触不良などが有効に検出できるようになりました。さらに試験時間0.1秒の高速判定を実現。高精度・高分解能・高速計測・判定機能で確実な試験を行うことが出来ます。

ワールドワイド対応

入力電源変更することなく海外工場でもそのまま使用できます。また、出力周波数が選択できるので、入力側の電源環境に依存しません。周波数50Hz/60Hzの安定した試験電圧を供給します。

タクトタイムを短縮

タクトタイムの短縮は生産性の向上につながります。タクトタイムを短くする事=測定の応答速度より早い試験時間では測定確度を極端に悪くしてしまうことから、耐電圧試験の命題でしたが、TOS5300シリーズでは0.1秒からの設定が可能になりました。

6kV/50WのDC耐電圧試験(TOS5301)

TOS5301は6kVまでのDC耐電圧試験が可能です。低リップルで負荷変動率3%以下の安定なDC/DCコンバータを搭載しています。

25V~1000V絶緣抵抗試験*

TOS5302は絶縁抵抗試験器を搭載しています。試験電圧は25V、50V、100V、125V、250V、500V、1000Vで、500V以上は~5.00G Ω までの絶縁抵抗試験が可能です。

※500V以上~5.00GΩの測定可能

生産現場での誤操作を防止するパネルカバー

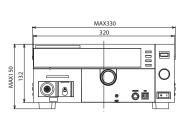
電子機器の生産ラインや検査ラインのワーカーは専門技術者ではないケースが多く、知らずに設定を変更してしまったり、誤操作をしてしまう可能性が高いです。これを防止するため、キーロック機能を装備するとともに、パネルを物理的に操作できなくするカバーを設けました。

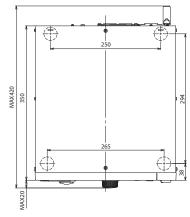
安全性と機能性を高めた出力端子

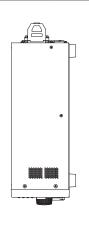
実際に使用される現場の環境およびオペレータの安全に配慮し、HIGH側出力端子を操作部から一番遠い所に配置しました。回転機構によりケーブルのねじれ(断線)を防止します。一方のLOW端子もロック機構を本体側に持たせる事でLOW側テストリードの金具を廃止しテストリードが傷つきにくくなりました。これら出力端子の突起部を無くす事により移動時などによる不意の破損を防止することが出来ます。また万一、被試験体と接続ケーブルが何かに引っ掛かったり、不用意な外力が加わった場合はHIGH(高圧)側は外れやすく、LOW(接地)側は外れにくい構造となっています。

誤挿入を防ぐためHIGH(赤)、LOW(黒)の色分けはもとより、端子形状も異なるものにしました。

▲ 前面パネルの操作部カバーを取り外したところ


WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER


特に指定のない限り、仕様は下記の設定および条件に準じます。


- ・ウォームアップ時間は、30分とします。
- TYP値: 代表的な値です。性能を保証するものではありません。 f.s: フルスケール

■耐電圧	試験器部					ームアップ時間は、30分と「 値:代表的な値です。性能を	します。 ☑保証するものではありません。 • f.s∶フルスケー			
				TOS5300	TOS	5301	TOS5302			
	出力範囲				0.05 kV	~5.00 kV				
		設定確度			± (2 % of set + :	20 V) [無負荷時]				
		設定範囲			0.00 kV	~5.50 kV				
		設定分解能			10 V	STEP				
	最大定格出	3力 ※1		500 VA (5 kV/100 mA)						
	最大定格電	〕			5	kV				
	最大定格電	流			100 mA [出力電] [] [] [] [] [] [] [] [] [] [
A C 111 ★ ☆7	トランス容	量			500) VA				
AC 出力部	出力電圧波	ੲ形 ※2			正引	玄波				
		ひずみ率		出力電圧0	.5 kV以上:3%以下(無負荷時、および純抵	抗負荷時)			
	周波数				50 Hz,	∕60 Hz				
		確度			±0.5 % (電圧	上昇中を除く)				
	電圧変動率				10 %以下(最大定	 :格負荷→無負荷)				
	入力電圧変	動		±	0.3 % (5 kV 無負荷時	. 電源電圧90 V~250	V)			
	短絡電流				200 mA以上(出力	電圧1.0 kV以上)				
	出力方式				PWM スイッ	チング方式				
	出力範囲					~6.00 kV				
		設定確度			± (2 % of set +					
		設定範囲				~6.20 kV				
		設定分解能				STEP				
	最大定格出				50 W (5 kV					
	最大定格電					kV				
DC 出力部	最大定格電			_		mA	_			
		5 kV無負荷時				/p-p				
	(TYP値)	最大定格負荷				Vp-p				
	電圧変動率				3 %以下(最大定	· ·				
	短絡電流(40 mA (6					
						に強制放電				
	放電機能					1125 kΩ)				
スタート電力	臣 (Start Vo	ltage)		耐電圧	試験時の開始時の電圧	を設定電圧の50%に	設定可能			
制限電圧値	(Limit Volt	age)		試験電圧設定の上限基	基準値を設定可能 AC	:0.00 kV~5.50 kV、	DC:0.00 kV∼6.20 kV			
出力電圧監	視機能			出力電圧が設	定値の (±350 V) を起	はえた場合に出力を遮	断して保護動作			
		スケール			6 kV AC	/DC f.s				
	アナログ	確度			±5	% f.s				
		指示			平均値応答。	/実効値目盛				
電圧計		測定範囲			0.000 kV~6.5	000 kV AC/DC				
电压可		表示				□□ kV				
	デジタル	確度		V < 500 V : ±	(1.5 % of rdng + 20	V) 、 V ≧ 500 V:±1	1.5 % of rdng			
		応答 ※3		真	の実効値/平均値応答	実効値表示切り替える				
		ホールド機能		試験	終了時の測定電圧値を	PASS、FAIL期間中ホ	ールド			
		測定範囲	AC:0.0	00 mA∼110 mA		ıA∼110 mA nA∼11 mA	AC:0.00 mA~110 mA			
			i =測定電流							
		東テ		i < 1 mA	$1 \text{ mA} \leq i < 10 \text{ mA}$	10 mA ≦ i < 100 mA	100 mA ≦ i			
電流計	デジタル	表示		□. □□□ mA	□ . □□□ mA	□□.□□ mA	□□□.□ mA			
		確度 ※4		1 00 m∆ < i·+ /	1.5 % of rdng) 、 i <	1 00 mA: + (1 5 %	of rdng + 30µA)			
		応答 ※3			.1.3 % OF Turig/、 「 の実効値/平均値応答					
		ホールド機能			いたが値/ 中の値心石 は験終了時の測定電流値					
		いい、ハトリン(10区日日		可	湯が、」 町の別に电川1	ここののが同中か一月	<u> </u>			

一外形寸法図一

単位:mm

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■ 耐電圧試験器部

		T	OS5300	TOS5301			TOS5302	
		判定	Ä	判定方法	表示	ブザー	SIGNAL I/O	
							U-FAIL信号を出力	
	判定方式/判定動作	LOWER F		出した場合に、出力を遮断しLOWER RiseTime)およびAC 耐電圧試験の 判定を行わない。	FAILが点灯 画面にUNDER表示	ON	L-FAIL信号を出力	
定機能		PASS	殳定時間を経過して異常が 官。	なければ出力を遮断しPASSと判	PASSが点灯 画面に表示	ON	PASS信号を出力	
7.2-100 80		• UPPER FAI • FAILまたは	IL、LOWER FAIL信号は PASSのブザー音量は調	れている場合にSTOPが入力され STOPが入力されるまで連続出力 節可能 、PASS HOLD中も0.2 sでブザー				
	上限基準値設定 (UPPER)	AC:0.01	l mA∼110 mA	AC:0.01 mA~110 mA DC:0.01 mA~11 mA	△ AC:0.01 mA~1		01 mA~110 mA	
	下限基準値設定(LOWER)	AC:0.01 m	A~110 mA/OFF	AC:0.01 mA~110 mA/0 DC:0.01 mA~11 mA/0	Λ C · 0 · 0 1 m Λ \sim 1 1 0 m Λ Λ OFF			
	判定確度 ※4	1.00 mA ≦ i: ± (1.5 % of set)、i < 1.00 mA: ± (1.5 % of set + 30μA)						
	電流検出方法		電流の	真の実効値、または平均値を算出	して基準値と比較			
	校正			純抵抗負荷を用いて正弦波の実行	- 「値で校正			
	電圧上昇時間 (Rise Time)			0.1 s∼10.0 s				
	設定分解能			0.1 s				
	電圧降下時間 (Fall Time)			0.1 s/OFF (PASS判定時のみ	有効)			
間	試験時間 (Test Time)		0.1 s	:∼999 s試験時間のオフ (TIMER	OFF) 機能あり			
ieu	設定分解能			0.1 s~99.9 s:0.1 s/100 s~9	99 s:1 s			
	確度	± (100 ppm + 20 ms) Fail Timeを除く AC: Fall Timeを除く DC: Rise Time 1 kV以上 ±50 msを加算、1 kV未満 ±100 msを加算						

※1: 出力に対する時間制限について

耐電圧電圧発生部の放熱能力は、大きさ、重量、コストなどを考慮して、定格出力の1/2の設計になっています。 以下の制限内で使用してください。制限外で使用すると、出力部の温度が過上昇して、内部保護回路が作動する場合があります。 そのときは試験を中断して正常温度に戻るまで待機してください。

周囲温度	上限基	基準値	休止時間	出力時間
	AC	$50~\text{mA} < i \leqq 110~\text{mA}$	出力時間と同等以上	最大30分
t ≤ 40 °C	AC	i ≦ 50 mA	不要	連続出力可能
l ≧ 40 C	DC	$5~\text{mA} < i \leqq 11~\text{mA}$	出力時間と同等以上	最大1分
	DC	$i \leq 5 \text{ mA}$	判定待ち時間 (WAIT TIME) と同等以上	連続出力可能

(出力時間 = 電圧上昇時間 + 試験時間 + 電圧下降時間)

※2:試験電圧波形について

容量の値が電圧依存性のある試料 (セラミックコンデンサ等) を負荷にした場合には、波形歪が発生することがあります。 ただし試験電圧が $1.5 \,\mathrm{kV}$ の場合には、 $1000 \,\mathrm{pF}$ 以下の容量の影響は無視できます。

本製品の高電圧電源部はPWM スイッチング方式のため、試験電圧が500V 以下ではスイッチングノイズ、

スパイクノイズの占める割合が大きくなり、試験電圧が低くなるほど波形歪も大きくなります。

※3: 真の実効値、平均値のいずれにおいても、測定確度をみたすには50ms以上の応答時間が必要です。

※4: 電流計確度、判定確度について

AC 耐電圧試験では、測定リードや治具などのストレー容量にも電圧が流れます。ストレー容量に流れる電流は、被試験器に流れる電流に加算されて測定されます。特に高感度、高精度の判定をする場合には、

ストレー容量に流れる電流を上限/下限基準値に加える等の考慮が必要です。

出力電圧	1 kV	2 kV	3 kV	4 kV	5 kV
長さ350 mmのリード線を 空中吊り時(TYP値)	2 μΑ	4 μΑ	6 μΑ	8 μΑ	10 μΑ
付属の高電圧テストリード TL31-TOS使用時 (TYP値)	16 μΑ	32 μΑ	48 μΑ	64 μΑ	80 μΑ

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■ 絶縁抵抗試験器部

					TOS5302						
	出力電圧			25 V, 50 V,	100 V, 125 V, 250 V, 500	V、1000 V DC・負極1	生 生				
		設定確度			-0 %、+5 %						
:	最大定格負荷				1 W (-1000 V DC/1 n	nA)					
:	最大定格電流				1 mA						
	リップル	1000 V 無負荷	2 Vp-p 以下								
)部 _		最大定格負荷	10 Vp-p 以下								
-	電圧変動率		1 %以下(最大定格負荷→無負荷)								
-	短絡電流		12 mA以下								
-	放電機能	insit Valta as	試験終了時に強制放電(放電抵抗 約25 kΩ) 試験電圧設定の上限基準値を設定可能 25 V、50 V、100 V、125 V、250 V、500 V、1000 V								
-	制限電圧値(L 出力電圧監視機		Ē		旦を設定可能 25 V、50 V、1 % of set + 10 V) を越えた場						
	山刀电圧監稅物	スケール		山刀电圧が工(10%	6 kV AC/DC f.s	百に山刀を巡削して	休喪期	F			
	アナログ	確度			±5 % f.s						
	, , , ,	指示				1盛					
-=,		測定範囲			0 V∼-1200 V	·					
王計				測定電圧	V < 100 V 100 V	≦ V < 1000 V	100	0 V ≦ V			
	デジタル	表示		表示							
				30/31							
		確度			± (1 % of rdng + 1						
		251/			$\leq R \leq 25 \text{ M}\Omega/\pm (2 \% \text{ of r})$						
		25 V		2	$5 \text{ M}\Omega < R \leq 125 \text{ M}\Omega / \pm 5$ $5 \text{ M}\Omega < R \leq 250 \text{ M}\Omega / \pm 1$	% of rdng 0 % of rdng					
					$\leq R \leq 50 \text{ M}\Omega/\pm (2 \% \text{ of r})$						
		50 V			\geq R \geq 50 M Ω / \pm (2 % of r 50 M Ω < R \leq 250 M Ω / \pm 5						
					$60 \text{ M}\Omega < R \leq 500 \text{ M}\Omega / \pm 1$						
				1	$00 \text{ k}\Omega \leq R \leq 100 \text{ M}\Omega/\pm 2$	% of rdng					
		100 V		10	$00 \text{ M}\Omega < R \leq 500 \text{ M}\Omega/\pm 5$	% of rdng					
	測定範囲/			5	$500 \text{ M}\Omega < R \le 1 \text{ G}\Omega/\pm 10$	% of rdng					
	測定確度				$25 \text{ k}\Omega \leq R \leq 125 \text{ M}\Omega/\pm 2$						
	*1 *2	125 V	$125 \text{ M}\Omega < R \le 625 \text{ M}\Omega / \pm 5 \% \text{ of rdng}$								
	M1 M2		$625 \mathrm{M}\Omega < \mathrm{R} \le 1.25 \mathrm{G}\Omega / \pm 10 \%$ of rdng								
抗計		250 V	$250 \text{ k}\Omega \leq R \leq 250 \text{ M}\Omega/\pm 2 \text{ % of rdng}$ $250 \text{ M}\Omega < R \leq 1.25 \text{ G}\Omega/\pm 5 \text{ % of rdng}$								
		250 V	$250 \text{ M}\Omega < R \ge 1.25 \text{ G}\Omega / \pm 5 \% \text{ of rdng}$ $1.25 \text{ G}\Omega < R \le 2.5 \text{ G}\Omega / \pm 10 \% \text{ of rdng}$								
			$1.23 \text{ GM} \times R \cong 2.3 \text{ GM} / \pm 10 \% \text{ of rdng}$ $500 \text{ k}\Omega \cong R \cong 500 \text{ M}\Omega / \pm 2 \% \text{ of rdng}$								
		500 V	500 M Ω < R \leq 2.5 G Ω / \pm 5 % of rdng								
			$2.5 \text{G}\Omega < R \le 2.5 \text{G}\Omega / \pm 3 \% \text{ of rdng}$								
		1000 V	$1 \text{ M}\Omega \leq R < 1 \text{ G}\Omega/\pm 2 \% \text{ of rdng}$								
-		10001	$1 G\Omega \le R \le 5 G\Omega / \pm 5 \% \text{ of rdng}$								
			25	kΩ ≦ R < 1.00 MΩ	$MΩ$ 10.0 $MΩ \le R < 100 MΩ$						
				□□□kΩ			□ΜΩ				
	表示 ※2										
			100.0	$\square\square\square M\Omega$	□.□□GΩ	012					
	LAK ALE		L		I.	#nee					
ールド		20050)			終了時の測定抵抗値をPASS						
が快出)	応答速度(Resp	JOHSE)		ŀ	FAST/MID/SLOW の3段階	と切り省え					
			判定	判	定方法	表示	ブザー	SIGNAL I/O			
			UPPER	上限基準値以上の抵抗値を検		FAILが点灯		U-FAIL 信号を			
			FAIL	出力を遮断し UPPER FAIL と ただし電圧上昇中(Rise Tim		画面にOVER表示	ON	出力			
				下限基準値以下の抵抗値を検							
			LOWER	下限基準値以下の抵抗値を快または電圧上昇中(Rise Tim		FAILが点灯	ON	L-FAIL 信号を			
	判定方式/判定	宇動作	FAIL	出力を遮断して LOWER FAIL	と判定。	画面にUNDER 表示		出力			
	, JAC / JAV 13A		DACC	設定時間を経過して異常がな	ければ出力を遮断し	DVCC+; F T	0	PASS 信号を			
ا پ			PASS	PASS と判定。		PASSが点灯 	ON	出力			
定能			DACC 信旦	I+DVCC HUID 記点れより	 ıている場合にSTOP が入力;	」 おれるまで油結中力		1			
110					TOP が入力されるまで連続と						
				はPASS のブザー音量は調							
			• PASS 判定	時のブザー音は0.2s固定、	PASS HOLD 中も0.2 sでブ	ザーOFF					
Ι.	上限基準値設定	定範囲			$30~\text{k}\Omega\sim5.00~\text{G}\Omega$!					
	下限基準値設定	定範囲			30 kΩ ~ 5.00 GΩ	!					
:	判定確度				測定確度に+2 dig						
	UPPER/LOW	VER 共通	200		rh (結露なし)、テストリード						
	.,		200 nA以下		は時間が必要です。電流検出応 ⋶している場合は0.5 s以上の			る場合は0.3 s以上、			
	電圧上昇時間((Pisa Tima)		SIOWに放花	Eしている場合は0.5 S以上の 10 ms (TYP値)	叫)				
_	電圧工弁時间(試験時間 (Test			0.1.00		R OFF) 機能なり					
間	Printenial (1620	設定分解能).1 s~99.9 s:0.1 s/100 s~						
		1									
1	確度	l			\pm (100 ppm + 20 m	ıs)					

WITHSTANDING VOLTAGE / INSULATION RESISTANCE TESTER

■ その他の機能/インターフェース

			TOS5300	TOS5301	TOS5302			
ダブルア	クション機	能 (Double Action)	STOPスイッチを押し離	してから0.5秒以内にSTARTスイッチを押	したときのみ試験を開始			
PASS 判	定保持時間	fl (Pass Hold)	PASS判定を保持する	時間を設定:50 ms/100 ms/200 ms/	/1 s/2 s/5 s/HOLD			
モーメン	タリ機能(Momentary)	STARTスイッチを押している間のみ試験を実行					
フェイル・	モード機能	(Fail Mode)	リモートコントロール	のストップ信号によるFAIL、またはPROT	ECTIONの解除を無効			
タイマー	機能(TIM	ER)		設定された時間が経過したら試験を終了	•			
出力電圧	監視機能	(Volt Error)	出力電圧が設定値の±350 Vを	E超えた場合にPROTECTION状態に移行	し、出力を遮断して試験を停止			
メモリ (N	Memory)			最大3通りの試験条件を記憶				
キーロッ	ク (Key lo	ck)	/\footnote{\chi_{\text{\chi}}}	ネルからの設定/変更操作のみを無効に	する			
保護機能	1		以下の条件の場合にPROTECTION	N状態に移行し、直ちに出力を遮断して試	験を停止。画面にメッセージを表示			
	Interlock	Protection		インターロック信号の入力を検出した場合	à			
	Power Su	pply Protection		電源部の異常を検出した場合				
	Volt Error	Protection		監視して、規定の範囲を超える電圧を検出 試験:±350 V、絶縁抵抗試験:± (10 %				
	Over Load	d Protection	耐電圧試験時に出力制限電力	以上の設定をした場合、AC耐電圧試験:!	550 VA、DC耐電圧試験:55 VA			
Γ	Over Hea	t Protection		本製品内部の温度が異常に上昇した場合	ì			
	Over Rati	ng Protection	耐電圧試!	験時の出力電流が規定時間を超えて出力	された場合			
	Calibratio	on Protection		設定された校正期限を過ぎた場合				
	Remote P	rotection	前面/	[《] ネルのREMOTEコネクタの脱着を検出し	た場合			
	SIGNAL I/	O Protection	後面パネルの	DSIGNAL I/OコネクタのENABLE信号が	変化した場合			
	USB Prote	ection	USBイン	ターフェースで制御中にUSBコネクタが抜	支けた場合			
システム	クロック			年/月/日 時:分:秒 で設定				
	校正日時			校正サービス時に設定				
	校正期限記 (Calibra	设定 tion Due Control)	次の校正期限を設定					
	校正期限5 (Calibra	刀れ警告 tion Protection)	設定した校正期限を過ぎたときの動作	設定した校正期限を過ぎたときの動作を設定。電源投入時に警告表示、または保護状態に移行して試験を不可能にする				
		USB		USB Specification 2.0				
インター	フェース	REMOTE	前面パネル9ピンMINI DINコネク	タ オプションを接続してスタート/スト	・ップのリモートコントロールが可能			
		SIGNAL I/O		後面パネルD-sub 25ピンコネクタ				

■ 一般仕様

			TOS5300	TOS5301	TOS5302				
表示				VFD: 256 x 64 dots + 4 STATUS 表示					
バックア	ップ電池寿命			3年 (25 ℃にて)					
設置場所			屋内、高度2000 mまで						
環境	仕様保証範囲	温度/湿度	5 ℃~35 ℃/20 %rh~80 %rh (結露なし)						
垛况	動作範囲温度	/湿度	0	°C~40 °C/20 %rh~80 %rh (結露なし	.)				
	保存範囲温度	/湿度		-20 ℃~70 ℃/90 %rh 以下 (結露なし))				
	公称電圧範囲	(許容電圧範囲)		100 Vac∼240 Vac (90 Vac∼250 Vac)					
電源	消費電力	無負荷時 (READY)		100 VA 以下					
电源	//////////////////////////////////////	定格負荷時		最大800 VA					
	許容周波数範	囲		47 Hz∼63 Hz					
絶縁抵抗	亢(AC LINE一シ	/ャシ間)		30 MΩ以上 (500 Vdc)					
耐電圧(AC LINEーシャ	·シ間)	1400 Vac	2秒間(全数試験)/1500 Vac、1分間	(型式試験)				
接地連絡	売性			25 Aac / 0.1 Ω 以下					
安全性	*1		低電圧指令	以下の指令および規格の要求事項に適合 2014/35/EU、EN 61010-1 (Class I <u>※4</u>	-				
電磁適名	以下の指令および規格の要求事項に適合				- Class A ※2、Group1 ※3) て2.5 m 未満を使用				
外形寸法	法(最大寸)		3	20 (330) W×132 (150) H×350 (420) D r	nm				
質量			約14kg	約15kg	約14kg				
付属品				ストリード (TL31-TOS) 1組 (赤黒各1本、 式 / 高電圧危険シール 1枚 / ユーザー					

- ※1:パネルにCE マーキング/ UKCA マーキングの表示のあるモデルに限ります。J1コネクタの接続用ケーブルにコアを取り付けないと適用されません。特注品、改造品には適用されません。
- ※2:本製品はClass A機器です。工業環境での使用が意図されています。本製品を住宅地区で使用すると干渉の原因となることがあります。そのような場合には、ラジオやテレビ放送の受信 干渉を 防ぐために、ユーザによる電磁放射を減少させる特別な措置が必要となることがあります。
- ※3:本製品はGroup 1機器です。本製品は、材料処理または検査/分析のために、電磁放射、誘導および/または静電結合の形で意図的に無線周波エネルギーを発生/使用しません。
- ※4: 本製品はClass I機器です。本製品の保護導体端子を必ず接地してください。正しく接地されていない場合、安全性は保障されません。
- ※5: 汚染とは、絶縁耐力または表面抵抗率の低下を引き起こし得る異物(個体、液体、または気体)が付着した状態です。汚染度2は、非導電性の汚染だけが存在し、ときどき結露によって 一時的に導電性になる得る状態を想定しています。
- ※6: ユーザーズマニュアル、通信インターフェースマニュアル、VISAライブラリ (KI-VISA)、計測器ドライバ (IVI-COM)、安全評価試験を収録。

WITHSTANDING VOLTAGE TESTER

RS232C

USB (€ UK

AC 耐電圧試験器

TOS5200

標準価格¥168,000

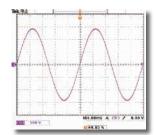
(税込¥184,800)

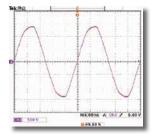
操作性・確実性・安全性を徹底した 低価格な AC 耐電圧試験器の「基準」モデルです。

AC耐電圧試験器TOS5200は、電気製品の安全確保に必要とされている4つの試験の 中で、耐電圧試験をするための試験器です。出力は5kV/100mA (AC)で、IEC、EN、 UL、VDE、JISなど各国の安全規格および電気用品安全法の要求事項に基づく電子機 器、電子部品の耐電圧試験が可能です。また、新開発のスイッチングアンプを採用する ことにより試験電圧の安定性を向上。ACライン電圧や周波数が変化しても出力電圧を 一定に保つことができるため、電源環境が不安定な地域でも安定した試験が行えます。 様々なテストニーズに対応できる機能装備も充実。操作性・確実性・安全性を徹底した 低価格なAC耐電圧試験器の「基準| モデルです。

- ●高安定な出力を実現するPWMアンプ方式
- ●5 kV/100 mA(500 VA)のAC耐電圧試験
- ●高精度計測±1.5 % of reading (電圧計500 V以上、電流計1 mA以上にて)
- ●ライズタイム/フォールタイムコントロール機能搭載
- ●ワールドワイド対応
- ●タクトタイム短縮(外部コントロール)
- ●キーロック&操作部カバー
- ●USB/RS232Cインターフェース搭載

信頼と実績が築くデファクト・スタンダード


WITHSTANDING VOLTAGE TESTER


基本性能

入力電圧に影響されない高安定出力!

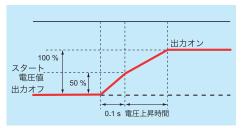
TOS5200は、PWM スイッチング方式により、入力電圧に影響されず、高安定出力が可能です。従来のスライドトランス方式では入力電圧の変動が出力に影響するため、正しく試験出来ないことがあります。歪んだ電圧を被試験物に印加する事は新品不良の原因を作ってしまう(部品劣化の加速)場合もあるのです。TOS5200は、ACラインの変動に影響を受けず安定した高電圧を出力できます。特に海外など電圧変動の大きい地域でも「安心」して、「安定」した信頼性の高い「安全」な試験が可能です。さらに出力周波数も50Hz/60Hz選択可能です。

耐電圧試験において、出力波形は重要なスペックです!

▲ TOS5200 の AC 出力波形

▲スライドトランス方式の AC 出力波形

タクトタイムの短縮

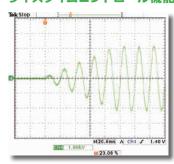

タクトタイムの短縮は生産性の向上につながります。タクトタイムを短くする事=測定の応答速度より早い試験時間では測定確度を極端に悪くしてしまうことから、耐電圧試験の命題でしたが、TOS5200では0.1秒からの設定が可能になりました。

PEADY START START START Discrete Start Delay Time) Discrete Start Delay Time)

最短 0.32s

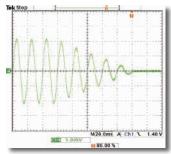
ライズタイム/フォールタイムコントロール機能!

ライズタイムコントロール機能は、EUT (被試験物)に必要以上のストレスをかけてしまうのを防ぐための機能です。EUTの安全性を確認するために耐電圧試験を行いますが、耐電圧試験の試験電圧はEUTが取り扱う電圧の5倍~10倍というとても高い電圧を印加します。ライズタイムなしで急激に高電圧を印加すると、過渡的に大きな電圧が発生し、EUTに対してダメージを与える場合があります。このため、各安全規格では耐電圧試験の方法を規定し、試験電圧を徐々に規定の電圧まで上げて試験を実施するように求めています。TOS5200のライズタイムコントロール機能は、電圧上昇時間は0.1sから10.0sまで(0.1s分解能)設定でき、また最初に印加するスタート電圧も試験電圧の50%(固定)に設定可能です。さらにフォールタイム機能により、PASS判定で終了後、徐々に試験電圧を降下させることができます。電圧降下時間は0.1s固定(OFFも可)です。



▲スタート電圧を試験電圧の50%に設定可能

高精度・高分解能・高速判定を実現


電圧計は $\pm 1.5\%$ of reading (500V以上) /最小分解能1V、電流計は $\pm 1.5\%$ of reading (1mA以上) /最小分解能 1μ Aと高確度・高分解能のTrue RMS計測回路を搭載しています。また、オートレンジ機能を搭載し、下限判定確度も上限判定確度と同等の性能を実現したため、テストリードの未接続や接触不良などが有効に検出できるようになりました。さらに試験時間0.1秒の高速判定を実現。高精度・高分解能・高速計測・判定機能で確実な試験を行うことが出来ます。

ライズタイムコントロール機能

AC耐電圧試験では設定電圧まで徐々に電圧を上昇させるライズタイムコントロール機能を搭載。電圧上昇時間は0.1s~10.0sまで0.1s分可能で設定可能です。

▲ライズタイム制御波形例

定時には、徐々に試験電圧 を降下させることができま す。電圧降下時間は0.1s 固定(OFFも可)です。

AC耐電圧試験のPASS判

▲フォールタイム制御波形例

リーク電流設定値の分解能アップ

TOS5200は判定基準値を0.01mA \sim 110mAまで設定することが可能です。

- ●製品や電子部品の実力値がどれぐらいあるかをより明確にすることができます。
- ●下限判定基準値の感度が上がったため、従来品以上に断線 や接触不良等の検出が正確にできるようになります。しか も、真の実効値で測定します。

WITHSTANDING VOLTAGE TESTER

■ 耐電圧試験部

- 特に指定のない限り、仕様は下記の設定および条件に準じます。 ・ウォームアップ時間は、30分とします。 ・TYP値:代表的な値です。性能を保証するものではありません。 ・reading:読み値を示します。・set:設定値を表します。・f.s:フルスケール

	出力範囲		0	.05 kV~5	5.00 kV							
	77343	設定確度			set + 20 V)[無	 負荷時]						
		設定範囲		.00 kV~5		X15. 93						
		設定分解能		0 V STEP								
	最大定格出											
				500 VA (5 kV/100 mA) 5 kV								
	最大定格電腦					L1						
	最大定格電流			00 WA [出力電圧0.5 kV以_	<u>[</u>]						
		トランス容量										
C 出力部	出力電圧波列			弦波								
		ひずみ率				下(無負荷時、および純抵抗	(負荷時)					
	クレストファ	クタ	√	2 ± 3 %.	以内(出力電圧80	0 V以上、無負荷時)						
	周波数		5	0 Hz/60	Hz							
		確度	±	-0.5 %(氰	電圧上昇中を除く)							
	電圧変動率		1	0 %以下 ((最大定格負荷→無	無負荷)						
	入力電圧変	助	±	0.3 % (5	kV 無負荷時、電流	源電圧90 V~250 V)						
	短絡電流		2	00 mA以.	上(出力電圧1.0 k	(V以上)						
	出力方式		Р	WM スイッ	 ッチング方式							
スタート電圧(Start Voltage)											
	imit Voltage)		_			を設定可能 AC:0.00 kV~						
出力電圧監視を						<u>- 0.00 kV</u> V) を越えた場合に出力を過		/E				
ロノリモ 止血 流化	75 DE	測定範囲			· 放足値の (上330 ~6.500 kV AC	v, とMM / 10-777日 12 M / 17 C M	三型 して 体 反 割	I F				
				.000 kV								
5.5.1		表示				1: 1 201/) 1/ > 5001	/. l 1 = 0/ . f	11				
電圧計	デジタル	確度				ading $+ 20 \text{ V}$) $\vee \text{ V} \ge 500 \text{ V}$	7: ±1.5 % of r	eading				
		応答 ※3				め値表示 切り替え可能						
		ホールド機能	訂	は験終了時	の測定電圧値をP	ASS、FAIL 期間中ホールド						
		測定範囲	Α	C:0.00 n	nA~110 mA							
			i	= 測定電	流							
		表示	i		流 i < 1 mA	1 mA ≦ i < 10 mA	10 mA ≦ i <	< 100 mA	10	0 mA ≦ i		
宣 本計	デジタ!!.	表示	i			1 mA ≦ i < 10 mA	10 mA ≦ i <			0 mA ≦ i		
電流計	デジタル	表示			i < 1 mA . □□□ mA	□. □□□ mA	00.0	□ mA				
電流計	デジタル	表示 確度 ※4			i < 1 mA . □□□ mA		00.0	□ mA				
電流計	デジタル		1	.00 mA ≦	i < 1 mA .□□□ mA ≦ i: ± (1.5 % of r	□. □□□ mA	00.0	□ mA				
電流計	デジタル	確度 ※4	1	□ .00 mA ≦ 夏の実効値	i < 1 mA . □□□ mA ≦ i: ± (1.5 % of r ī/平均値応答実交	□.□□□ mA reading) 、i < 1.00 mA:	00.0	□ mA				
■流計	デジタル	確度 ※4	1	.00 mA ≦ ē o z 实	i < 1 mA . □□□ mA ≦ i: ± (1.5 % of r ī/平均値応答実交	□.□□□ mA reading)、i < 1.00 mA: = thicker t	00.0	□ mA ading + 30 μ	A)	□ . □ mA		
意流計	デジタル	確度 ※4	1	□ .00 mA ≦ 夏の実効値	i < 1 mA . □□□ mA ≦ i: ± (1.5 % of r ī/平均値応答実交	□.□□□ mA reading)、i < 1.00 mA: a 物値表示 切り替え可能	00.0	□ mA				
電流計	デジタル	確度 ※4	1	.00 mA ≦ 夏の実効値 試験終了時 判定	i < 1 mA .□□□ mA ≦ i: ± (1.5 % of r i/平均値応答実效 fの測定電流値をP	□.□□□ mA reading)、i < 1.00 mA: = th dia 表示 切り替え可能 ASS 期間中ホールド 判定方法	00.0	□ mA ading + 30 μ 表示	A)	SIGNAL I/C		
電流計	デジタル	確度 ※4	1	.00 mA ≦ ē o z 实	i < 1 mA .□□□ mA ≦ i: ± (1.5 % of r i/平均値応答実效 fの測定電流値をP	□.□□□ mA reading)、i < 1.00 mA: = th dia 表示 切り替え可能 ASS 期間中ホールド 判定方法 電流を検出した場合に、	00.0	□ mA ading + 30 μ	A)	□ . □ mA		
電流計	デジタル	確度 ※4	1	.00 mA ≦ 更の実効値 試験終了時 判定 UPPER	i < 1 mA .□□□ mA ≦ i: ± (1.5 % of r i / 平均値応答実效 f の測定電流値をP 上限基準値以上のii	□.□□□ mA reading)、i < 1.00 mA: = th dia 表示 切り替え可能 ASS 期間中ホールド 判定方法 電流を検出した場合に、	00.0	□ mA ading + 30 μ. 表示 FAIL及び	A) ブザー	SIGNAL I/C U-FAIL 信号を		
電流計	デジタル	確度 ※4	1	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA . □□□ mA	□.□□□ mA reading)、i < 1.00 mA: 1 th dia 表示 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。	上(1.5 % of rea	□ mA ading + 30 μ 表示 FAIL及び UPPERが点灯	A) ブザー ON	SIGNAL I/C U-FAIL 信号を 出力		
電流計	デジタル	確度 ※4	1	.00 mA ≦ 更の実効値 試験終了時 判定 UPPER	i < 1 mA . □□□ mA ≦ i:± (1.5 % of r ☑ / 平均値応答実交 の測定電流値をP 上限基準値以上の記 出力を遮断し UPPI 下限基準値以下の記 FAIL と判定。電圧	□.□□□ mA reading)、i < 1.00 mA: =	上(1.5 % of rea	□ mA ading + 30 μ. 表示 FAIL及び	ス) ブザー ON	SIGNAL I/C U-FAIL 信号を		
電流計	デジタル	確度 ※4 応答 ※3 ホールド機能	1	□□ .00 mA ≦ @の実効値 試験終了時 判定 UPPER FAIL LOWER	i < 1 mA . □□□ mA	□.□□□ mA reading)、i < 1.00 mA: =	上(1.5 % of rea	□ mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び	ス) ブザー ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を		
電流計		確度 ※4 応答 ※3 ホールド機能	1	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA . □□□ mA	□.□□□ mA reading)、i < 1.00 mA: = thindex 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。	上(1.5 % of rea 遮断し LOWER E下降中(Fall	□ mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯	A) ブザー ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力		
		確度 ※4 応答 ※3 ホールド機能	1	□□ .00 mA ≦ @の実効値 試験終了時 判定 UPPER FAIL LOWER	i < 1 mA . □□□ mA	□.□□□ mA reading)、i < 1.00 mA: =	上(1.5 % of rea 遮断し LOWER E下降中(Fall	□ mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び	ス) ブザー ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を		
電流計		確度 ※4 応答 ※3 ホールド機能	1	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA . □□□ mA	□.□□□ mA reading)、i < 1.00 mA: = thindex 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。	上(1.5 % of rea 遮断し LOWER E下降中(Fall	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯	A) ブザー ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
		確度 ※4 応答 ※3 ホールド機能	計	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA . □□□ mA i: ± (1.5 % of r i / 平均値応答実交 の測定電流値をP 上限基準値以上の 出力を遮断し UPPI 下限基準値以下の FAIL と判定。電圧. Time) は判定を行 設定時間を経過して	□.□□□ mA reading)、i < 1.00 mA: = thindex 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。	造断し LOWER E下降中(Fall	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 pASSが点灯 画面に表示	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
		確度 ※4 応答 ※3 ホールド機能	1 項	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA . □□□ mA i : □□□ mA i : □□□ mA i : = (1.5 % of r i / 平均値応答実交 の測定電流値をP 上限基準値以上の記 出力を遮断し UPPI 下限基準値以下の記 FAIL と判定。電圧. Time)は判定を行 設定時間を経過して 号はPASS HOLD FAIL、LOWER FA	□.□□□ mA reading)、i < 1.00 mA: =	遮断し LOWER E下降中(Fall	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 DASSが点灯 画面に表示	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
		確度 ※4 応答 ※3 ホールド機能	1 票	の0 mA ≦ 直の実効値 対験終了時 判定 UPPER FAIL LOWER FAIL PASS ・PASS信 ・UPPER ・FAILま7	i < 1 mA · □□□ mA i : = (1.5 % of r · 平均値応答実交 の測定電流値をP 上限基準値以上の計 出力を遮断しUPPI 下限基準値以下の計 FAIL と判定。電圧 Time)は判定を行 設定時間を経過して i号はPASS HOLD FAIL、LOWER FA たはPASSのブザー	□.□□□ mA reading)、i < 1.00 mA: = th dia 表示 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。 て異常がなければ出力を遮断し に設定されている場合にST NIL信号はSTOPが入力され。 ・音量は調節可能	遮断しLOWER E下降中(Fall PASSと判定。	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 DASSが点灯 画面に表示	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
		確度 ※4 応答 ※3 ホールド機能	1 票	の0 mA ≦ 直の実効値 対験終了時 判定 UPPER FAIL LOWER FAIL PASS ・PASS信 ・UPPER ・FAILま7	i < 1 mA · □□□ mA i : = (1.5 % of r · 平均値応答実交 の測定電流値をP 上限基準値以上の計 出力を遮断しUPPI 下限基準値以下の計 FAIL と判定。電圧 Time)は判定を行 設定時間を経過して i号はPASS HOLD FAIL、LOWER FA たはPASSのブザー	□.□□□ mA reading)、i < 1.00 mA: =	遮断しLOWER E下降中(Fall PASSと判定。	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 DASSが点灯 画面に表示	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	判定方式/キ	確度 ※4 応答 ※3 ホールド機能	1	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA · □□□ mA i : = (1.5 % of r · 平均値応答実交 の測定電流値をP 上限基準値以上の計 出力を遮断しUPPI 下限基準値以下の計 FAIL と判定。電圧 Time)は判定を行 設定時間を経過して i号はPASS HOLD FAIL、LOWER FA たはPASSのブザー	□.□□□ mA reading)、i < 1.00 mA: = th dia 表示 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。 て異常がなければ出力を遮断し に設定されている場合にST NIL信号はSTOPが入力され。 ・音量は調節可能	遮断しLOWER E下降中(Fall PASSと判定。	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 DASSが点灯 画面に表示	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	判定方式/乳	確度 ※4 応答 ※3 ホールド機能	1 票 記	の0 mA ≦ この実効値 対験終了時 判定 UPPER FAIL LOWER FAIL PASS ・PASS信 ・UPPER ・FAILS等 ・PASS等 ・PASS等	i < 1 mA . □□□ mA ≦ i:± (1.5 % of r ☑ / 平均値応答実交 ☑ / 下限基準値以上の □ 出力を遮断し UPPI 下限基準値以下の □ FAIL と判定。電圧. Time)は判定を行 設定時間を経過し □ 受ける □ 受ける □ ではPASSのブザー にはPASSのブザー音は	□.□□□ mA reading)、i < 1.00 mA: = th 値表示 切り替え可能 ASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を上昇中(RiseTime)および電圧 わない。 て異常がなければ出力を遮断し に設定されている場合にST AIL信号はSTOPが入力され。 一音量は調節可能 60.2s固定、PASS HOLD中部	遮断しLOWER E下降中(Fall PASSと判定。	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 DASSが点灯 画面に表示	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	判定方式/乳	確度 ※4 応答 ※3 ホールド機能 別定動作 设定 (UPPER) 设定 (LOWER)	1 京 記	の0 mA ≦ この実効値 対験終了時 判定 UPPER FAIL LOWER FAIL PASS ・PASS信 ・PASS判 C:0.01 n C:0.01 n	i < 1 mA . □□□ mA si:±(1.5% of ring) mp ma i 平均値応答実交 の測定電流値をP 上限基準値以上の可 出力を遮断しUPP 下限基準値以下ので FAIL と判定。電圧 Time)は判定を行 設定時間を経過して ではPASS HOLD FAIL、LOWER FA にはPASSのブザー ははPASSのブザー音は mA~110 mA	□.□□□ mA reading)、i < 1.00 mA: = th 値表示 切り替え可能 ASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を上昇中(RiseTime)および電圧 わない。 て異常がなければ出力を遮断し に設定されている場合にST AIL信号はSTOPが入力され。 一音量は調節可能 60.2s固定、PASS HOLD中部	遮断し LOWER E下降中(Fall PASS と判定。 COPが入力されるまで連続出力 も0.2sでブザー	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 画面に表示 るまで連続出力	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	判定方式/型 上限基準値記 判定確度 ※	確度 ※4 応答 ※3 ホールド機能 引定動作 砂定 (UPPER) 砂定 (LOWER)	1 言 品 A A A	の0 mA ≦ を の実効値 対験終了時 判定 UPPER FAIL LOWER FAIL PASS ・PASS信 ・PASS判 C:0.01 m C:0.01 m	i < 1 mA i < 1 mA i : 二 mA i : 二 mA i : 二 mA i : 土 (1.5 % of r i	□.□□□ mA reading)、i < 1.00 mA: ± reading) reading reading) reading reading) reading reading) reading r	遮断し LOWER E下降中(Fall PASS と判定。 TOPが入力されるまで連続出力 も0.2sでブザー	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 画面に表示 るまで連続出力	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	判定方式/型 上限基準値記 判定確度※ 電流検出方	確度 ※4 応答 ※3 ホールド機能 引定動作 砂定 (UPPER) 砂定 (LOWER)	1 真 記	の0 mA ≦ の実効値 対験終了時 判定 UPPER FAIL LOWER FAIL PASS ・ PASS信 ・ UPPER ま ・ PASS判 C:0.01 m C:0.01 m C:0.01 m	i < 1 mA i C mA i C mA i : 士 (1.5 % of rangle for particular	□.□□□ mA reading)、i < 1.00 mA: = rh did表示 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。 て異常がなければ出力を遮断し に設定されている場合にST NIL信号はSTOPが入力され。 音量は調節可能 は0.2s固定、PASS HOLD中部 Feet)、i < 1.00 mA: ± (1.15) 均値を算出して基準値と比	遮断し LOWER E下降中(Fall PASS と判定。 TOPが入力されるまで連続出力 も0.2sでブザー	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 画面に表示 るまで連続出力	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	上限基準値言 判定確付 判定確付 判電流検工	確度 ※4 応答 ※3 ホールド機能 引定動作 登定 (UPPER) 设定 (LOWER) 4	1 1 言 3 A A A 1 電 級	の0 mA ≦ を の実 が値 対験終了時 判定 UPPER FAIL LOWER FAIL PASS ・PASS信・UPPER FAILまです。 ・PASS判 C:0.01 n C:0.01 n C:0.01 n は抗負荷	i < 1 mA i · □□□ mA i · 平均値応答実交 i の測定電流値をP i 上限基準値以上の記 i 出力を遮断し UPPI 下限基準値以下の記 FAIL と判定。電圧 Time)は判定を行 設定時間を経過して i 号はPASS HOLD FAIL、LOWER FA たはPASSのブザー 対定時のブザー音は nA~110 mA nA~110 mA nA~110 mA i · □ · □ · □ · □ · □ · □ · □ · □ · □ ·	□.□□□ mA reading)、i < 1.00 mA: = rh did表示 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。 て異常がなければ出力を遮断し に設定されている場合にST NIL信号はSTOPが入力され。 音量は調節可能 は0.2s固定、PASS HOLD中部 Feet)、i < 1.00 mA: ± (1.15) 均値を算出して基準値と比	遮断し LOWER E下降中(Fall PASS と判定。 TOPが入力されるまで連続出力 も0.2sでブザー	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 画面に表示 るまで連続出力	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	上限基準値言 判定確付 判定確付 判電流検工	確度 ※4 応答 ※3 ホールド機能 到定動作 UPPER) UCC (UPPER) UCC (LOWER) UCC (LOWER) UCC (LOWER)	1 1 点記 記	の0 mA ≤ の実 が 値 が の mA ≤ の の mA ≤ の 実 が 値 が 単定 UPPER FAIL LOWER FAIL PASS ・ PASS に ・ PASS に ・ PASS	i < 1 mA i · □□□ mA i · 平均値応答実交 i の測定電流値をP i 上限基準値以上の記 i 出力を遮断し UPPI 下限基準値以下の記 FAIL と判定。電圧 Time)は判定を行 設定時間を経過して i 号はPASS HOLD FAIL、LOWER FA たはPASSのブザー 対定時のブザー音は nA~110 mA nA~110 mA nA~110 mA i · □ · □ · □ · □ · □ · □ · □ · □ · □ ·	□.□□□ mA reading)、i < 1.00 mA: = rh did表示 切り替え可能 PASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。 て異常がなければ出力を遮断し に設定されている場合にST NIL信号はSTOPが入力され。 音量は調節可能 は0.2s固定、PASS HOLD中部 Feet)、i < 1.00 mA: ± (1.15) 均値を算出して基準値と比	遮断し LOWER E下降中(Fall PASS と判定。 TOPが入力されるまで連続出力 も0.2sでブザー	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 画面に表示 るまで連続出力	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	判定方式/判定方式/判定 基準値値 ※ 校電圧上昇時間	確度 ※4 応答 ※3 ホールド機能 到定動作 WC (UPPER) WC (LOWER) 4 は I (Rise Time) WC 分解能	1 点言: AAA11	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA I.□□□ mA i: = (1.5 % of ring) mA i: = (1.5 % of ring) ma	□.□□□ mA reading)、i < 1.00 mA: = th dia 表示 切り替え可能 PMASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を 上昇中(RiseTime)および電圧 わない。 て異常がなければ出力を遮断し に設定されている場合にST NIL信号はSTOPが入力され。 音量は調節可能 は0.2s固定、PASS HOLD中部 FF Set)、i < 1.00 mA: ± (1.5 均値を算出して基準値と比ら 実行値で校正	遮断し LOWER E下降中(Fall PASS と判定。 TOPが入力されるまで連続出力 も0.2sでブザー	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 画面に表示 るまで連続出力	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
小定機能	判定方式/型型度 基準値	確度 ※4 応答 ※3 ホールド機能 印定動作 は (UPPER) は (LOWER) は (Rise Time) 設定分解能 引 (Fall Time)	1 真言 品 A A A A 1 電 終 0 0 0 0	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA i. □□□ mA i. □□□ mA ii : ± (1.5 % of ring) mi ma	□.□□□ mA reading)、i < 1.00 mA: =	遮断し LOWER E下降中(Fall PASS と判定。 TOPが入力されるまで連続出力 も0.2sでブザー	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 画面に表示 るまで連続出力	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		
	判定方式/判定方式/判定 基準値値 ※ 校電圧上昇時間	確度 ※4 応答 ※3 ホールド機能 印定動作 は (UPPER) は (LOWER) は (Rise Time) 設定分解能 引 (Fall Time)	1 京 記 A A A A 1 電 料 0 0 0 0	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	i < 1 mA i. □□□ mA i. □□□ mA ii : ± (1.5 % of ring) mi ma	□.□□□ mA reading)、i < 1.00 mA: = th die表示 切り替え可能 ASS 期間中ホールド 判定方法 電流を検出した場合に、 ER FAIL と判定。 電流を検出した場合に、出力を上昇中(RiseTime)および電圧力ない。 て異常がなければ出力を遮断し に設定されている場合にST NIL信号はSTOPが入力されます。 音量は調節可能 は0.2s固定、PASS HOLD中部 は1.00 mA: ± (1.00 mA: ± (1.	遮断し LOWER E下降中(Fall PASS と判定。 TOPが入力されるまで連続出力 も0.2sでブザー	国 mA ading + 30 μ 表示 FAIL及び UPPERが点灯 FAIL及び LOWERが点灯 画面に表示 るまで連続出力	ON ON	SIGNAL I/C U-FAIL 信号を 出力 L-FAIL 信号を 出力 PASS 信号を		

WITHSTANDING VOLTAGE TESTER

※1: 出力に対する時間制限について

耐電圧電圧発生部の放熱能力は、大きさ、重量、コストなどを考慮して、定格出力の1/2の設計になっています。 以下の制限内で使用してください。制限外で使用すると、出力部の温度が過上昇して、内部保護回路が作動する場合があります。 そのときは試験を中断して正常温度に戻るまで待機してください。

周囲温度	上限	基準値	休止時間	出力時間
t ≤ 40 °C	AC	$50~\text{mA} < i \leqq 110~\text{mA}$	出力時間と同等以上	最大30分
t ≧ 40 C	AC	i ≦ 50 mA	不要	連続出力可能

(出力時間=電圧上昇時間+試験時間+電圧下降時間)

※2:試験電圧波形について

容量の値が電圧依存性のある試料(セラミックコンデンサ等)を負荷にした場合には、波形歪が発生することがあります。

ただし試験電圧が1.5 kVの場合には、1000 pF以下の容量の影響は無視できます。

本製品の高電圧電源部はPWMスイッチング方式のため、試験電圧が500 V以下ではスイッチングノイズ、

スパイクノイズの占める割合が大きくなり、試験電圧が低くなるほど波形歪も大きくなります。

※3: 真の実効値、平均値のいずれにおいても、測定確度をみたすには50 ms以上の応答時間が必要です。

※4: 電流計確度、判定確度について

AC 耐電圧試験では、測定リードや治具などのストレー容量にも電圧が流れます。ストレー容量に流れる電流は、

被試験器に流れる電流に加算されて測定されます。特に高感度、高精度の判定をする場合には、

ストレー容量に流れる電流を上限/下限基準値に加える等の考慮が必要です。

出力電圧	1 kV	2 kV	5 kV
長さ350 mmのリード線を空中吊り時(TYP値)	2 μΑ	4 μΑ	10 μΑ
付属の高電圧テストリードTL31-TOS 使用時(TYP値)	16 μΑ	32 μΑ	80 μΑ

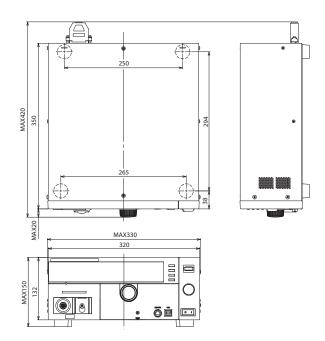
湿度70 %以上の場合には、50 µAを加算します。

■ その他の機能/インターフェース

テストモード				
ダブルアクショ	ン機能(Double Action)	STOPスイッチを押し離してから0.5秒以内にSTARTスイッチを押したときのみ試験を開始		
PASS 判定保持	時間(Pass Hold)	PASS判定を保持する時間を設定: 50 ms / 100 ms / 200 ms / 1 s / 2 s / 5 s / HOLD		
モーメンタリ機	能(Momentary)	STARTスイッチを押している間のみ試験を実行		
フェイルモード	機能(Fail Mode)	リモートコントロールのストップ信号によるFAIL、またはPROTECTIONの解除を無効		
タイマー機能(7	ΓIMER)	設定された時間が経過したら試験を終了		
出力電圧監視機	能(Volt Error)	出力電圧が設定値の±350 Vを超えた場合にPROTECTION状態に移行し、出力を遮断して試験を停止		
メモリー(Mem	ory)	最大3通りの試験条件を記憶		
キーロック(Ke	y lock)	パネルからの設定/変更操作のみを無効にする		
		以下の条件の場合にPROTECTION状態に移行し、直ちに出力を遮断して試験を停止。画面の「PROTECTION」が点火		
Interlock Prot	ection	インターロック信号の入力を検出した場合		
Power Supply	Protection	電源部の異常を検出した場合		
Volt Error Pro	tection	出力電圧を監視して、規定の範囲を超える電圧を検出した場合、 耐電圧試験: ±350 V		
Over Load Pro	otection	出力電力を監視して、出力制限電力を超える電力を検出した場合、 耐電圧試験:550 VA		
Over Heat Pro	tection	本製品内部の温度が異常に上昇した場合		
Over Rating P	rotection	耐電圧試験時の出力電流が規定時間を超えて出力された場合		
Remote Prote	ction	前面パネルのREMOTEコネクタの脱着を検出した場合		
SIGNAL I/O Pr	otection	後面パネルのSIGNAL I/OコネクタのENABLE信号が変化した場合		
USB Protection	on	リモートコントロールで動作中にUSBコネクタが抜けたか不備を検出した場合		
US	SB	USB Specification 2.0 (標準Bタイプソケット)		
ンターフェース RS	S232C <u>**1</u>	D-SUB 9ピンコネクタ(EIA-232-Dに準拠) POWERスイッチ、Key lock以外の全機能		
RE	MOTE	前面パネル9ピンMINI DINコネクタ オプションを接続してスタート/ストップのリモートコントロールが可能		
SI	GNAL I/O	後面パネルD-sub 25ピンコネクタ		

※1: RS232C使用時には、トークモードの設定ができます。

トークモード	説明		
0	パソコンからのコマンドのみ応答。(工場出荷時)		
	試験開始時と試験終了時に、自動的に応答。本製品の状態、設定値、および測定値を返します。		
	試験開始時の応答		<start></start>
1	試験終了時の応答	状態	<pass>、<u_fail>、<l_fail>、<prot>、または<about></about></prot></l_fail></u_fail></pass>
		設定値、測定値	試験番号、プログラム番号、試験モード、電圧測定値、電流測定値、試験時間


WITHSTANDING VOLTAGE TESTER

■一般仕様

表示			LCD: LEDバックライト		
環境	設置場所		屋内、高度2000 mまで		
	仕様保証範囲温度/湿度		5 ℃~35 ℃/20 %rh~80 %rh (結露なし)		
	動作範囲温度/湿度		0 °C~40 °C/20 %rh~80 %rh (結露なし)		
	保存範囲温度/湿度		-20 ℃~70 ℃/90 %rh以下(結露なし)		
電源	公称電圧範囲(許容電圧範囲)		100 Vac~240 Vac (90 Vac~250 Vac)		
	消費電力	無負荷時(READY)	100 VA以下		
		定格負荷時	最大800 VA		
	許容周波数範囲		47 Hz∼63 Hz		
絶縁抵抗	(AC LINE ーシ	ャシ間)	30 MΩ以上 (500 Vdc)		
耐電圧(AC LINE ーシャシ間)		シ間)	1500 Vac、1分間		
接地連続	性		25 Aac / 0.1 Ω以下		
電磁適合性 (EMC) ※1			以下の指令および規格の要求事項に適合 EMC 指令 2014/30/EU EN 61326-1 (ClassA ※2)、EN 55011 (ClassA ※2、Group1 ※3) EN 61000-3-2, EN 61000-3-3 [適用条件] 本製品に接続するケーブルおよび電線は、すべて2.5 m 未満を使用 SIGNAL I/Oを使用する場合には、シールドケーブルを使用 高電圧テストリードTL31-TOS を使用、試験器以外のところで放電していない状態		
安全性 ※1			以下の指令および規格の要求事項に適合 低電圧指令 2014/35/EU、EN 61010-1 (Class I ※4 , 汚染度 2 ※5)		
外形寸法(最大寸)			320(330)W×132(150)H×350(420)Dmm		
質量			約 14 kg		
付属品			電源コード 1 本/高電圧テストリード (TL31-TOS) 1 組 (赤黒各 1 本、ワニロクリップ付き、 1.5 m) D-SUB25P プラグ 1 個 組立式/高電圧危険シール 1 枚 /パッキングリストクイックリファレンス 和・英、各 1 枚 / 安全のために 1 冊 / CD-R		

- ※1:パネルにCE マーキング/ UKCA マーキングの表示のあるモデルに限ります。J1コネクタの接続用ケーブルにコアを取り付けないと適用されません。特注品、改造品には適用されません。
- ※2:本製品はClass A機器です。工業環境での使用が意図されています。本製品を住宅地区で使用すると干渉の原因となることがあります。そのような場合には、ラジオやテレビ放送の受信 干渉を防ぐために、ユーザによる電磁放射を減少させる特別な措置が必要となることがあります。
- ※3: 本製品はGroup 1機器です。本製品は、材料処理または検査/分析のために、電磁放射、誘導および/または静電結合の形で意図的に無線周波エネルギーを発生/使用しません。
- st4:本製品はClass I機器です。本製品の保護導体端子を必ず接地してください。正しく接地されていない場合、安全性は保障されません。
- ※5:汚染とは、絶縁耐力または表面抵抗率の低下を引き起こし得る異物(固体、液体、または気体)が付着した状態です。汚染度2は、非導電性の汚染だけが存在し、ときどき、結露によって一時的に導電性になり得る状態を想定しています。

一外形寸法図一

単位:mm

INSULATION RESISTANCE TESTER

リーズナブルで高性能。小型で便利な絶縁抵抗試験器

OUTPUT HIGH WENDRY VOLTAGE TESISTANCE TESIST TOS7200 THERE OF LIPPER COUNTY WAT THERE ON WAT THERE ON WAT THERE ON WAT THE ON WAT

RS232C

絶縁抵抗試験器

TOS7200

· 標準価格 ¥ 110.000

(税込¥121,000)

試験電圧-25V~-1000Vdc 抵抗測定範囲0.01MΩ~ 5000MΩ 出力電圧特性 [JIS C 1302-2002] に準拠

TOS7200は、各種電気・電子部品から電気・電子機器まで広範囲に使用できる絶縁抵抗試験器です。出力電圧は-25~-1000Vdcを1V分解能で任意に設定可能とし、JIS C 1302-2002の出力特性に準拠しました。また、ウィンドウコンパレータ、タイマ機能を

装備していますので、各種安全規格に基づいた絶縁抵抗試験を効率よく行なう事が可能です。その他、外部から呼出可能なパネルメモリ、SIGNAL I/Oコネクタ、RS232Cインターフェースを標準装備し、自動化システムにも対応しています。

試験電圧	抵抗測定範囲
-25 V	$0.03~\text{M}\Omega\sim250~\text{M}\Omega$
-50 V	$0.05~\text{M}\Omega\sim500~\text{M}\Omega$
-100 V	$0.10~\text{M}\Omega\sim1000~\text{M}\Omega$
-125 V	$0.13~\text{M}\Omega\sim1250~\text{M}\Omega$
-250 V	$0.25~\text{M}\Omega\sim2500~\text{M}\Omega$
-500 V	$0.50~\text{M}\Omega\sim5000~\text{M}\Omega$
-1000 V	$1.00~\text{M}\Omega\sim5000~\text{M}\Omega$

- ●ディスチャージ機能搭載
- ●ウィンドウコンパレータ搭載
- ●ホールド機能(試験終了時の測定抵抗値をPASS期間中ホールド)
- ●タイマ機能搭載
- ●リア出力端子
- ●測定値モニタ端子
- ●パネルメモリ搭載(10通り)
- ●SIGNAL I/O、リモコン端子搭載
- ●RS232Cインターフェース標準装備

INSULATION RESISTANCE TESTER

出力部							
出力電圧範囲				-25 V∼-1000 V	dc		
	分解能	1 V					
	設定確度			± (1.5 % of setting -	+ 2 V)		
最大定格負荷			1 W (-1000 Vdc/1 mA)				
最大定格電流			1 mA				
出力端子	出力型式			フローティング	r		
표기기계 기	対接地電圧			±1000 Vdc			
リップル	1 kV無負荷			2 Vp-p以下			
99210	最大定格負荷	_		10 Vp-p以下			
短絡電流	取八足扣兵内	+		12 mA以下			
──────── 出力立ち上がり時			50 ms以下 (10 %~90 %、無負荷)				
ロガエらエがり時 放電機能	1 EI	+		【験終了時に強制放電(放電			
ルーベル 電圧計			ī.	以映於」時に短削以电(以刊	3担机23 K11)		
				0.1/- 1200.1/			
測定範囲				0 V∼-1200 V			
分解能				1 V			
確度				± (1 % of reading -	+ 1 V)		
抵抗計 別字祭田			0.01.140 5000	MO (100 = A+ +7 > = -1 -1-	校司法1 … A + での禁団	>	
則定範囲 + 二			0.01 MΩ~5000	MΩ (100 nAを超え最大定	哈电流1 MAよじの軛囲!	- ()	
表示			$R < 10.0 M\Omega$ 10.0	MΩ≦ R < 100.0 MΩ 100.0 M	$M\Omega \le R < 1000 \mathrm{M}\Omega$ 1000	MΩ ≦ R :	≦ 5000 MΩ
			□.□□MΩ	MΩ	□□□ΜΩ		ΜΩ
						R=測定	絶縁抵抗値
-E/X			100 nA < i ≦ 20		-		
			± (10 % of read	ing) ± (5 % of reading	g) ± (2 % of readi	ng)	
		[湿度20)%rh~70%rh(結露なきこと	と)、テストリードの揺れなどの	外乱のないこと] i= 電	圧測定値	/抵抗測定値
 ンジ選択				電流測定レンジをAUTOかり	FIXに選択可		
	AUTO			 ・値に応じて電流測定レンジ	を随時自動的に変更		
	FIX		出力電圧設定値とLOV	WER設定値により電流測定	レンジを固定 (UPPER (OFFにて)	
 ホールド機能	<u> </u>			———— 終了時の測定抵抗値をPAS	 S期間中ホールド		
 判定機能							
 判定方式/判定動	作						
3,0,3,0,7,1,0,0,3		判定	判定方法		表示	ブザー	SIGNAL I/O
		UPPER FAIL		直を検出した場合に出力を遮断		ON	U FAIL信号を出力
			UPPER FAILと判定。		UPPER LEDが点灯		
				直を検出した場合に出力を遮断	- FΔ F カ\ロバ		
		LOWER FAIL	LOWER FAILと判定、たえ (WAIT TIME) 内は判定	だし試験開始から判定待ち時間 『を行わない	LOWER LEDが点灯	ON	L FAIL信号を出力
			(11111111111111111111111111111111111111		LOWER LLD/3 /m/3		
			シウは明を経過1 男労力			ON	DACC信品を出力
		PASS		「なければ出力を遮断しPASSと	判定 PASS LEDが点灯	ON	PASS信号を出力
		・PASS信号は約	 J200 ms間出力、ただし、P <i>A</i>	がなければ出力を遮断しPASSと ASS HOLDで" HOLD " に設え	判定 PASS LEDが点灯		
		・PASS信号は約 ・UPPER FAIL、	D200 ms間出力、ただし、PA LOWER FAIL信号はSTOPが	がなければ出力を遮断しPASSと ASS HOLDで" HOLD " に設え	判定 PASS LEDが点灯 定されている時はSTOPが		
L阳甘淮 <i>佑(</i> IIDDE	-D) 乳中蘇爾	・PASS信号は約 ・UPPER FAIL、	7 J200 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設 な で い う 力されるまで連続出力 よ、ただし共通設定のため単独	判定 PASS LEDが点灯 記されている時はSTOPが 由に調整不可	入力され	
		・PASS信号は約 ・UPPER FAIL、	2000 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 MΩ〜50	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設定 (入力されるまで連続出力 た、ただし共通設定のため単独)00 ΜΩ [ただし、最大定	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 R格電流以下の範囲にて	入力され 	
F限基準値 (LOWI		・PASS信号は約 ・UPPER FAIL、	7 J200 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設定 (入力されるまで連続出力 た、ただし共通設定のため単独)00 ΜΩ [ただし、最大定	判定 PASS LEDが点灯 記されている時はSTOPが 由に調整不可	入力され 	
F限基準値 (LOWI 判定確度	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA:	2000 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 MΩ〜50	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設定 (入力されるまで連続出力 た、ただし共通設定のため単独)00 ΜΩ [ただし、最大定	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 R格電流以下の範囲にて	入力され 	
下限基準値 (LOWI 可定確度	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA:	D200 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 MΩ~50 0.01 MΩ~50	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な (入力されるまで連続出力 た、ただし共通設定のため単独 000 MΩ [ただし、最大定 000 MΩ [ただし、最大定	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 E格電流以下の範囲にて E格電流以下の範囲にて	入力され 	るまで連続出力
下限基準値 (LOWI 可定確度	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(D200 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 MΩ~50 0.01 MΩ~50	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な (入力されるまで連続出力 た、ただし共通設定のため単独 000 MΩ [ただし、最大定 000 MΩ [ただし、最大定	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 E格電流以下の範囲にて E格電流以下の範囲にて	5入力され ± (29	るまで連続出力 pA < i ≦1mA
下限基準値 (LOWI 可定確度	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(2000 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 UPPER、LOWER) R 0.01 M Ω \leq R $<$ 10.0 M Ω 10.0 M Ω \leq R $<$ 50.0 M Ω 50.0 M Ω \leq R $<$ 100 M Ω	ぶなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な (入力されるまで連続出力 た、ただし共通設定のため単独 2000 MΩ [ただし、最大定 2000 MΩ [ただし、最大定 100 nA ≦ i ≦ 200 nA	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 200 nA < i ≤ 1μA	が入力され 	pA < i ≦1mA 6 of setting + 3 digit) 6 of setting + 3 digit) 6 of setting + 3 digit)
F限基準値 (LOWI 判定確度	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(2000 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 UPPER、LOWER) R 0.01 M Ω \leq R $<$ 10.0 M Ω 10.0 M Ω \leq R $<$ 50.0 M Ω 50.0 M Ω \leq R $<$ 100 M Ω 100 M Ω \leq R $<$ 200 M Ω	ぶなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な 入力されるまで連続出力 たただし共通設定のため単独 000 MΩ [ただし、最大定 100 MΩ [ただし、最大定 100 nA ≦ i ≦ 200 nA - - - ± (10 % of setting + 5 digit)	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 E 格電流以下の範囲にて 200 nA < i ≤ 1µA - ± (5% of setting + 5 digit ± (5% of setting + 5 digit ± (5% of setting + 5 digit	プスカされ 	ルA < i ≦1mA 6 of setting + 3 digit)
F限基準値 (LOWI 判定確度	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(2000 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 UPPER、LOWER) R 0.01 M Ω \leq R $<$ 10.0 M Ω 10.0 M Ω \leq R $<$ 50.0 M Ω 100 M Ω \leq R $<$ 200 M Ω 200 M Ω \leq R $<$ 500 M Ω	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な 入力されるまで連続出力 た、ただし共通設定のため単独 $000~M\Omega$ [ただし、最大定 $000~M\Omega$ [ただし、最大定 $100~nA \le i \le 200~nA$ - - $\pm (10~of setting + 5~digit)$ $\pm (10~of setting + 5~digit)$	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 E 格電流以下の範囲にて A を電流以下の範囲にて 200 nA < i ≤ 1µA - ± (5% of setting + 5 digit ± (5% of setting + 5 digit ± (5% of setting + 5 digit ± (5% of setting + 5 digit	1	ルA < i ≦1mA 6 of setting + 3 digit)
F限基準値 (LOWI 判定確度	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(2000 ms間出力、ただし、PA LOWER FAIL信号はSTOPか SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 UPPER、LOWER) R 0.01 M Ω \leq R $<$ 10.0 M Ω 10.0 M Ω \leq R $<$ 50.0 M Ω 100 M Ω \leq R $<$ 200 M Ω 200 M Ω \leq R $<$ 500 M Ω 500 M Ω \leq R $<$ 500 M Ω	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な 入力されるまで連続出力 たただし共通設定のため単独 $000~M\Omega$ [ただし、最大定 $000~M\Omega$ [ただし、最大定 $100~nA \le i \le 200~nA$ - - $\pm (10~of setting + 5 digit)$ $\pm (10~of setting + 5 digit)$ $\pm (10~of setting + 5 digit)$	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 E 格電流以下の範囲にて A を電流以下の範囲にて 200 nA < i ≤ 1µA - ± (5% of setting + 5 digit ± (5% of setting + 5 digit	Ti入力され	ルA < i ≦1mA 6 of setting + 3 digit)
下限基準値 (LOWI 判定確度	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(2000 ms間出力、ただし、PA LOWER FAIL信号はSTOPか SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω ~50 UPPER, LOWER) R 0.01 M Ω \leq R < 10.0 M Ω 10.0 M Ω \leq R < 50.0 M Ω 50.0 M Ω \leq R < 100 M Ω 100 M Ω \leq R < 200 M Ω 200 M Ω \leq R < 500 M Ω 500 M Ω \leq R < 500 M Ω 1000 M Ω \leq R < 2000 M Ω	なければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な 入力されるまで連続出力 たたに共通設定のため単独 $000~M\Omega$ [ただし、最大定 $000~M\Omega$ [ただし、最大定	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 E 格電流以下の範囲にて A を電流以下の範囲にて 200 nA < i ≤ 1µA - ± (5% of setting + 5 digit ± (5% of setting + 5 digit		ルA < i ≦1mA 6 of setting + 3 digit)
上限基準値 (UPPE 下限基準値 (LOWI 判定確度 JPPER/LOWER#	ER) 設定範囲	・PASS信号は約 ・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(0.00 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω 50 0.01 M Ω 50 0.01 M Ω 50 0.01 M Ω 50 R < 100 M Ω 50 M Ω 50 R < 200 M Ω 50 M Ω 50 R < 500 M Ω 50 M Ω 50 R < 500 M Ω 50 M Ω 50 R < 500 M Ω 50 M Ω 50 R < 500 M Ω 50 M Ω 50 R < 500 M Ω 50 M Ω 50 R < 500 M Ω 50 M Ω 50 R < 500 M Ω 50 M Ω 50 R < 5000 M Ω 50 M Ω 50 R < 5000 M Ω 50 M Ω 50 R < 5000 M Ω 500 M Ω 50 M Ω	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な 入力されるまで連続出力 たたに共通設定のため単独 $000~M\Omega$ [ただし、最大定 $000~M\Omega$ [ただし、日本でし、日本でし、日本でし、日本でし、日本でし、日本でし、日本でし、日本で	判定 PASS LEDが点灯 定されている時はSTOPが 由に調整不可 E 格電流以下の範囲にて 200 nA < i ≦ 1µA - ± (5% of setting + 5 digit ± (5% of setting + 5 digit		ルA < i ≦1mA 6 of setting + 3 digit)
F限基準値 (LOWI 判定確度	ER) 設定範囲	・PASS信号は約・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(UPPER、LOWER	2020 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω 56 0.00 M Ω 56 0.00 M Ω 57 0.00 M Ω 58 0.00 M Ω 58 0.00 M Ω 50 R < 1000 M Ω 500 M Ω 50 M Ω	なければ出力を遮断しPASSと ASS HOLDで"HOLD"に設ない入力されるまで連続出力。 ただし共通設定のため単独 $000~M\Omega$ [ただし、最大定 $000~M\Omega$ [ただし、最大定 $100~nA \le i \le 200~nA$ - $ \pm (10~\% of setting + 5 digit)$ $\pm (10~\% of setting + 100~digit)$	判定 PASS LEDが点灯 せた調整不可 E 格電流以下の範囲にて A を電流以下の範囲にて E 格電流以下の範囲にて A を電流以下の範囲にて 200 nA < i ≤ 1µA - ± (5% of setting + 5 digit ± (5% of setting + 5 digit		A まで連続出力 A A < i ≦1mA A of setting + 3 digit)
下限基準値(LOWI 判定確度 JPPER∕LOWER≠	ER) 設定範囲	・PASS信号は約・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(UPPER、LOWER	2020 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω 56 0.00 M Ω 56 0.00 M Ω 57 0.00 M Ω 58 0.00 M Ω 58 0.00 M Ω 50 R < 1000 M Ω 500 M Ω 50 M Ω	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な 入力されるまで連続出力 たたに共通設定のため単独 $000~M\Omega$ [ただし、最大定 $000~M\Omega$ [ただし、日本でし、日本でし、日本でし、日本でし、日本でし、日本でし、日本でし、日本で	判定 PASS LEDが点灯 せた調整不可 E 格電流以下の範囲にて A を電流以下の範囲にて E 格電流以下の範囲にて A を電流以下の範囲にて 200 nA < i ≤ 1µA - ± (5% of setting + 5 digit ± (5% of setting + 5 digit		A まで連続出力 A A < i ≦1mA A of setting + 3 digit)
下限基準値(LOWI 判定確度 JPPER/LOWER J	ER)設定範囲 +通	・PASS信号は約・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(UPPER、LOWER	2020 ms間出力、ただし、PA LOWER FAIL信号はSTOPが SSのブザー音量は調節可能 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω ~50 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω \$6 0.01 M Ω 56 0.00 M Ω 56 0.00 M Ω 57 0.00 M Ω 58 0.00 M Ω 58 0.00 M Ω 50 R < 1000 M Ω 500 M Ω 50 M Ω	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設弦 ストロース に表 は は かった は は かった かり がった かり	判定 PASS LEDが点灯 定されている時はSTOPが 独に調整不可 E 格電流以下の範囲にて E 格電流以下の範囲にて 200 nA < i ≦ 1µA - ± (5 % of setting + 5 digit ± (5 % of setting + 5 digit - F の揺れなどの外乱の: nA以下のLOWER判定には1		A まで連続出力 A A < i ≦1mA A of setting + 3 digit)
下限基準値(LOWI 削定確度 JPPER/LOWER+ 時間 試験時間設定範囲	ER) 設定範囲	・PASS信号は約・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(UPPER、LOWER	20200 ms間出力、ただし、PALOWER FAIL信号はSTOPが 20.01 M $\Omega \sim 50$ 0.01 M $\Omega \sim 50$ 0.01 M $\Omega \sim 50$ 0.01 M $\Omega \simeq 60$	ぶなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設な 入力されるまで連続出力 たたし共通設定のため単独 200 MΩ [ただし、最大定 200 MΩ [ただし、最大定 100 nA ≦ i ≦ 200 nA - ± (10 % of setting + 5 digit) ± (10 % of setting + 50 digit) ± (10 % of setting + 100 digit) rh (結露なきこと)、テストリ 試験時間が必要です。また、200 0.5 s~999 s TIMER Of	判定 PASS LEDが点灯 定されている時はSTOPが はに調整不可 E格電流以下の範囲にて EA電流以下の範囲にて 200 nA < i ≦ 1µA - ± (5 % of setting + 5 digit ± (5 % of setting + 5 digit + (5 % of sett		A まで連続出力 A A < i ≦1mA A of setting + 3 digit)
下限基準値(LOWI 判定確度 JPPER/LOWER共 時間 試験時間設定範囲	ER)設定範囲 +通	・PASS信号は約・UPPER FAIL、 ・FAILまたはPA: i=試験電圧/(UPPER、LOWER	20200 ms間出力、ただし、PALOWER FAIL信号はSTOPが 20.01 M $\Omega \sim 50$ 0.01 M $\Omega \sim 50$ 0.01 M $\Omega \sim 50$ 0.01 M $\Omega \simeq 60$	がなければ出力を遮断しPASSと ASS HOLDで"HOLD"に設弦 ストロース に表 は は かった は は かった かり がった かり	判定 PASS LEDが点灯 定されている時はSTOPが はに調整不可 E格電流以下の範囲にて EA電流以下の範囲にて 200 nA < i ≦ 1µA - ± (5% of setting + 5 digit ± (5% of setting + 5 digit - Fo MEAN などの外乱の: nA以下のLOWER判定には1		A まで連続出力 A A < i ≦1mA A of setting + 3 digit)

INSULATION RESISTANCE TESTER

■ インターフェースとその他の機能

REMOTE

前面パネル6ピン Mini DINコネクタ

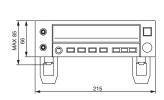
オプションのリモートコントローラRC01-TOSまたは、RC02-TOSを接続して、 スタート/ストップをリモートコントロール(ただし変換アダプタが必要)

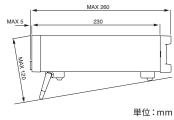
SIG	NAL I/O	後	面パネルD:	SUB25P	コネクタ	
No.	信号名	1/0	内容			
1	PM0	T	LSB ※			
2	PM1	ı	*		[SIGN/	AL I/Oコネクタピン配置図】
3	PM2	ı	*			
4	PM3	I	MSB ※		13121	10987654321
5	N.C					
6	N.C				25 24	23 22 21 20 19 18 17 16 15 14 /
7	N.C					
8	N.C					
9	STB	I	パネルメモ	リのストロ	コーブ信号 <i>7</i>	(力端子
10	N.C					
11	N.C					
12	N.C					
13	COM		回路コモン	/ (シャショ	電位)	
14	H.V ON	0	試験中お。	よび出力端	子間に電圧	Eが残留している間ON
15	TEST	0	試験中に	N		
16	PASS	0	PASSと判	定された問	寺に約0.2秒	間ON。PASS HOLD時連続ON
17	U FAIL	0	上限判定	基準値以上	を検出し、	FAILと判定された時に連続ON
18	L FAIL	0	下限判定	基準値以下	を検出し、	FAILと判定された時に連続ON
19	READY	0	待機状態	‡ON		
20	N.C					
21	START	1	スタート信	号入力端	子	
22	STOP	I	ストップ信			
23	ENABLE	I	リモートニ	ントローノ	レイネーブル	信号入力端子
24	N.C					<u> </u>
25	СОМ		回路コモン	/ (シャシ)	電位)	
*:1	digit BCD□-	ーアクティ	ブ入力。パネ	ルメモリの	選択信号	入力端子
入力	仕様	ハイレベ	ル入力電圧	11 V~1	5 V	入力信号は全てローアクティブ

入力仕様	ハイレベル入力電圧	11 V~15 V	入力信号は全てローアクティブ
	ローレベル入力電圧	0 V~4 V	制御。入力端子は抵抗により +12 V にプルアップ。入力端子の
	ローレベル入力電流	最大 -5 mA	開放はハイレベルを入力したの
	入力時間幅	最小 5 ms	と等価。
出力仕様	出力方式	オープンドレイン	√出力 (4.5 Vdc~30 Vdc)
	出力耐電圧	30 Vdc	
	出力飽和電圧	約0.7 V (25 °C)	
	最大出力電流	400 mA (TOTAL)	
ANALOG OUT			

ANALOG OUT

測定抵抗値に応じた電圧を対数圧縮して0~4 Vの範囲で出力		
+	Vo=log(1+Rx/1 MΩ) Rx:測定抵抗値 (1 MΩ:0.30 V、10 MΩ:1.04 V、100 MΩ: 2.00 V、1000 MΩ:3.00 V、10000 MΩ以 上4.00 V)出力インピーダンス 1 kΩ	
СОМ	アナログ出力回路コモン	
確度	\pm (2 % of full scale)	


RS232C


後面パネルD SUB 9ピンコネクタ(EIA-232-D準拠)
POWERスイッチ、KEYLOCK以外の全機能がリモートコントロール可能
ボーレート 9600/19200/38400 bps
(データ:8 bit、パリティ:なし、ストップビット:2 bitは固定)

表示

7セグメントLED、電圧表示4桁、絶縁抵抗値表示4桁、時間表示3桁

一外形寸法図一

メモリ機能

最大10通りの試験条件をメモリ可能

バックアップ電池寿命

3年以上 (25 ℃にて)

3十次上 (23 C)	3十次上(23 ℃に ℃)		
TEST MODE			
MOMENTARY	STARTスイッチを押している間のみ試験を実行		
FAIL MODE	リモートコントロールのストップ信号による FAILの解除を無効にする		
DOUBLE ACTION	STOPスイッチを押し離してから約0.5秒以内にSTARTスイッチを押したときのみ試験を開始		
PASS HOLD	PASSの判定を保持する時間を0.2秒、またはHOLDに設定可能		
KEYLOCK			

START/STOP以外のキー操作を受け付けない状態に移行

■一般仕様

- /X/L/IX			
環境			
設置場所	屋内 高度 2000 mまで		
仕様保証範囲	温度 5°C~35°C		
11 依 木	湿度 20 %rh~80 %rh (ただし、結露なきこと)		
動作範囲	温度 0℃~40℃		
野TF 电记出	湿度 20 %rh~80 %rh (ただし、結露なきこと)		
保存範囲	温度 -20°C~70 °C		
沐仔型四	湿度 90 %rh以下 (ただし、結露なきこと)		
電源			
公称電圧範囲 (許容電圧範囲)	100 Vac∼240 Vac (85 Vac∼250 Vac)		
消費電力 定格負荷時	最大30 VA		
許容周波数範囲	47 Hz∼63 Hz		
絶縁抵抗	30 MΩ以上 (500 Vdc) [AC LINE―シャシ間]		
耐電圧	1390 Vac 2秒間、10 mA以下 [AC LINE―シャシ間]		
接地連続性	25 Aac / 0.1 Ω以下		
安全性※1	以下の規格の要求事項に適合 EN 61010-1(Class I※2、汚染度※3)		
시 파/ 그 가 / 65 모			

外形寸法/質量

215 (215) W×66 (85*) H×230 (260) Dmm/約2kg *スタンド使用時:120

付属品

電源コード: 1本、高圧テストリードTL08-TOS(1.5m): 1組、 セットアップガイド: 1冊、クイックリファレンス: 和文(1枚)、英文(1枚)、 安全のために: 1冊、CD-ROM: 1枚

- ※1:特注品、改造品には適応されません。
- ※2:本製品はClass I機器です。本製品の保護導体端子を必ず接地してください。 正しく接地されていない場合、安全性は保証されません。
- ※3:汚染とは、絶縁耐力または表面抵抗率の低下を引き起こし得る異物(固体、液体、または気体)が付着した状態です。汚染度2は、非導電性の汚染だけが存在し、ときどき、結露によって一時的に導電性になり得る状態を想定しています。

最 大 60 A までの規格試験に対応したアース導通試験器

GPIB RS232C DRIVERS (CA

アース導通試験器

TOS6210

標準価格 ¥ 380,000

税込¥418,000)

60Aまでの試験が可能!

TOS6210は、IEC, EN, VDE, BS, UL, JIS, 電気用品安全法等の従来の安全規格に加えて、情報処理機器 (ITE)の安全規格ULにも対応できる大電流タイプのアース導通試験器です。定電流駆動方式による歪の少ない電流波形と高い測定確度などの基本性能および各種機能は従来製品 (TOS6200) から継承しつつ、最大試験電流を30Aから同規格の要求する60Aまで拡大しました。また規格要求されている電圧降下での判定も可能です。

さらには、本体パネルメモリに情報処理機器、家電、医療機器、計測器など20種類の安全規格の試験条件をあらかじめ格納し、簡単な呼び出し操作でUL規格をはじめIEC, JISなどで定められた保護接地 (Protective earthing) や保護接続 (Protective bonding) の導通試験の設定を行うことができます。

その他、オフセットキャンセル機能や、校正年月日・製造番号などを入力しておきGPIB/RS232Cから読み出すメモ機能など、現場の細かなニーズにお応えした機能も装備されています。

- ●試験電流値: AC6 A~60 A、抵抗値: 0.001 Ω~0.600 Ω
- ●抵抗値・電圧降下での判定が可能
- ●オフセットキャンセル機能搭載
- ●試験条件を100通り記憶
- ●試験条件のプログラム化が可能
- ●コンタクトチェック機能搭載
- ●GPIB、RS232C標準装備
- ●テストリード標準装備 (TL12-TOS)

EARTH CONTINUITY TESTER

出力部		
電流設定範囲		6.0 Aac~62.0 Aac
※1※4	() hT ()	(最大定格出力以下で、かつ出力端子電圧が5.4 V以下の抵抗の場合)
	分解能	0.1 A
	確度	± (1 % of setting + 0.4 A)
最大定格出力		220 VA (出力端子において)
ひずみ率		2 %以下 (20 A以上の0.1 Ω純抵抗負荷にて)
周波数		50/60 Hz正弦波 (選択可)
	確度	±200 ppm
開放端子電圧		6 Vrms以下
出力方式		PWMスイッチング方式
出力電流計		
測定範囲		0.0 Aac~66.0 Aac
分解能		0.1 A
確度		\pm (1 % of reading + 0.4 A)
応答		平均值応答/実効值表示(応答時間200 ms)
ホールド機能		試験終了時の測定電流値をPASS、FAIL期間中ホールド
出力電圧計		
測定範囲		0.00 Vac~6.00 Vac
分解能		0.01 V
オフセットキャンセ	 ル機能	0.00 V~5.40 V (OFF機能あり)
確度		± (1 % of reading + 0.02 V)
応答		平均值応答/実効値表示(応答時間200 ms)
ホールド機能		試験終了時の測定電圧値をPASS、FAIL期間中ホールド
抵抗計 ※2		
測定範囲		0.001 Ω~0.600 Ω
		0.001 Ω
オフセットキャンセ	 ル機能	0.000 Ω~0.600 Ω (OFF機能あり)
確度		\pm (2 % of reading \pm 0.003 Ω)
ホールド機能		試験終了時の測定抵抗値をPASS期間中ホールド
良否判定機能 ※3		
抵抗値による 判定方式		ウインドウコンパレータ方式 ・上限基準値以上の抵抗値を検出した場合にFAIL判定 ・下限基準値以下の抵抗値を検出した場合にFAIL判定 ・FAILと判定したとき、出力を遮断しFAIL信号を発生 ・設定時間を経過し異常がなければ出力を遮断してPASS信号を発生
	上限基準値 (UPPER)設定範囲	0.001 Ω~0.600 Ω
	下限基準値 (LOWER)設定範囲	0.001 Ω~0.600 Ω
	分解能	0.001 Ω
	判定確度	\pm (2 % of UPPER $+$ 0.003 Ω)
サンプリング電圧 値による判定方式		ウインドウコンパレータ方式 ・上限基準値以上の電圧値を検出した場合にFAIL判定 ・下限基準値以下の電圧値を検出した場合にFAIL判定 ・FAILと判定したとき、出力を遮断しFAIL信号を発生 ・設定時間を経過し異常がなければ出力を遮断してPASS信号を発生
	上限基準値 (UPPER)設定範囲	0.01 V~5.40 V
	下限基準値 (LOWER)設定範囲	0.01 V~5.40 V
	分解能	0.01 V
	分解能 判定確度	0.01 V ± (2 % of UPPER + 0.05 V)

※1:出力に対する時間制限について

本器の出力部の放熱能力は、大きさ、質量、コストなどを考慮して定格出力の1/3の設計になっています。

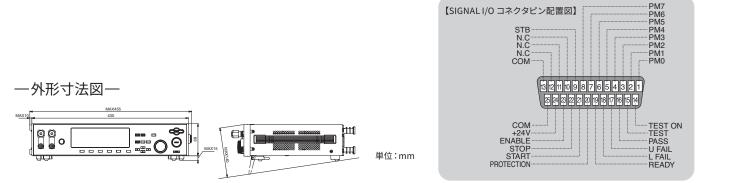
下表に示す制限内で使用してください。

制限を超えて使用すると、出力部の温度が過上昇して内部保護回路が働く場合があります。

出力時間制限				
周囲温度 t (℃)	試験電流 I (A)	休止時間	最大試験時間	
	40 < I ≦ 60	試験時間と同等以上	10分以下	
t ≦ 40℃にて	20 < I ≦ 40	試験時間と同等以上	30分以下	
	I ≦ 20	不要	連続出力可能	

※2:抵抗計の応答時間について

抵抗値は電圧測定値と電流測定値から演算して瞬時に算出しています。


抵抗計の応答時間は電圧計、電流計の応答時間に準じます。

※3:抵抗値と電圧値による同時判定はできません。

EARTH CONTINUITY TESTER

LED		PASSと判定されたときに約0.2秒間以上点灯
LLU	PASS	PASS HOLDに設定されているときは連続点灯
	UPPER FAIL	上限基準値以上の抵抗値または電圧値を検出し、FAILと判定されたときに点灯
	LOWER FAIL	下限基準値以下の抵抗値または電圧値を検出し、FAILと判定されたときに点灯
ブザー		PASS と判定されたときに、設定されたパスホールド時間の間ブザーON ・次の状態で連続的にブザーON PASS HOLDに設定されているときにPASSの判定 UPPER / LOWER FAILの判定 ・FAILまたはPASSのブザーの音量は調整可能 ただし、設定が共通のため単独の調整は不可
時間		たたび、欧定が八起のため十垣の副正郎十号
試験時間	設定範囲	0.3 s~999 s TIMER OFF 機能あり
2-1-3-1-3	確度	± (100 ppm of setting + 20 ms)
環境		
動作環境		屋内使用、過電圧カテゴリⅡ
 仕様保証範囲	温度	5 °C~35 °C
	湿度	20 %rh~80 %rh (結露なし)
動作範囲	温度	0 °C~40 °C
	湿度	20 %rh~80 %rh (結露なし)
保存範囲	温度	-20 °C~70 °C
	湿度	90 %rh以下 (結露なし)
 高度	l	2000 mまで
電源		
入力電圧範囲		85 Vac~250 Vac
消費電力	無負荷時 (READY)	60 VA以下
	定格負荷時	最大420 VA
入力周波数範囲		47 Hz∼63 Hz
絶縁抵抗		30 MΩ以上 (500 Vac) AC LINE-シャシ間
耐電圧		1390 Vac (2秒間) AC LINE-シャシ間
接地連続性		25 Aac / 0.1 Ω以下
安全性 ※1 以	下の指令および規格の	要求事項に適合
		以下の指令および規格の要求事項に適合 低電圧指令 2014/35/EU※2 EN61010-1 (Class I※3/汚染度 2※4)
電磁適合性(EMC	C) <mark>※1 ※2</mark> 以下の指	合および規格の要求事項に適合
		以下の指令および規格の要求事項に適合 EMC 指令 2014/30/EU EN61326-1 (Class A**5)、EN55011 (Class A**5、Group 1**6) EN61000-3-2、EN61000-3-3 適合条件 1. 付属テストリードを使用 (TL12-TOS) 2. SIGNAL I/Oを使用する場合には、3m未満のシールドケーブルを使用
外形寸法 (最大部	3)	430 (455) W×88 (140) H×270 (350) Dmm
質量		約11 kg
付属品		
		電源コード:1本、テストリード:1組(TL12-TOS)、ショートバー:2本(OUTPUT端子-SAMPLING 端子間に接続されています)、電源ヒューズ:2本(ヒューズホルダの中の予備を含めて2本)、セットアップガイド:1冊、クイックリファレンス:和文1冊、英文1冊、安全のために:1冊、CD-ROM:1枚
※1:特注品、改造品	品には適用されません。	

- ※1:特注品、改造品には適用されません。
- **2: パネルにCEマーキング / UKCAマーキングの表示のあるモデルに限ります。
- ※3:本器はClass I 機器です。本器の保護導体端子を必ず接地してください。正しく接地されていない場合、安全性は保証されません。
- ※4: 汚染とは、絶縁耐力または表面抵抗率の低下を引き起こし得る異物(固体、液体、または気体)が付着した状態です。汚染度2は、非導電性の汚染だけが存在し、ときどき、結露によって一時的に導電性になり得る状態を想定しています。
- ※5:本器はClass A 機器です。工業環境での使用が意図されています。本器を住宅地区で使用すると干渉の原因となることがあります。そのような場合には、ラジオやテレビ放送の受信干渉を防ぐために、ユーザによる電磁放射を減少させる特別な措置が必要となることがあります。
- ※6:本器はGroup 1機器です。本器は、材料処理または検査/分析のために、電磁放射、誘導および/または静電結合の形で意図的に無線周波エネルギーを発生/使用しません。

EARTH CONTINUITY TESTER

最 大 30 Aまでの規格試験に対応したアース導通試験器の定番

GPIB RS232C DRIVERS (€ UK

アース導通試験器

TOS6200A

- 標準価格¥250,000

(税込¥275,000)

自動試験システムに対応する定電流方式採用 タクトタイムの短縮が要求される生産ラインに最適です

TOS6200Aは、電気用品安全法、IEC、EN、VDE、BS、UL、JIS等の安全規格中のクラスI機器により要求されるアース導通試験を実施する為の試験器です。新開発の高効率電源により150VAの大出力を達成し小型軽量を実現しました。定電流方式を採用したことにより、被試験物の抵抗値変化に対して安定した電流供給が可能ですので、生産ラインにおける自動試験システムに十分対応ができます。操作面についても大きく見やすいディスプレイをはじめ、メモリ機能で試験条件を100通りまで記憶し、さらにそれをプログラムすることで自動実行を可能にするなど使いやすさを徹底追及しました。また、GPIBおよびRS232Cインターフェースを標準装備していますので、外部からの試験電流、判定抵抗値、試験時間などの試験条件のコントロールおよび測定値、試験結果のリードバックが可能です。テストリードも標準で付属しており、高いコストパフォーマンスも魅力の1台です。

- ●試験電流値: AC3 A~30 A、 抵抗値: 0.001 Ω~1.200 Ω
- ●抵抗値、電圧降下での判定が可能
- ●オフセットキャンセル機能搭載
- ●試験条件を100通り記憶
- ●試験条件のプログラム化が可能
- ●コンタクトチェック機能搭載
- ●GPIB、RS232C標準装備
- ●テストリード標準装備 (TL11-TOS)

TOS6200A

EARTH CONTINUITY TESTER

出力部		
電流設定範	囲※1	3.0 Aac~31.0 Aac (最大定格出力以下で、かつ出力端子電圧が5.4 V以下 の抵抗の場合)
5	解能	0.1 A
砑	度	± (1 % of setting + 0.2 A)
最大定格出	カ	150 VA (出力端子において)
ひずみ率		2%以下(10A以上の0.1Ω純抵抗負荷にて)
周波数		50/60 Hz正弦波 (選択可)
_	 建度	±200 ppm
開放端子電		6 Vrms以下
出力方式		PWMスイッチング方式
出力電流計		
測定範囲		0.0 Aac~33.0 Aac
分解能		0.1 A
確度		± (1 % of reading + 0.2 A)
応答		平均值応答/実効値表示(応答時間200 ms)
ホールド機能	能	試験終了時の測定電流値をPASS、FAIL期間中ホールド
出力電圧計		
測定範囲		0.00 Vac~6.00 Vac
分解能		0.01 V
	トャンセル機能	
確度	, , , , , , , , , , , , , , , , , , , ,	± (1 % of reading + 0.02 V)
応答		工 (1 % of reading + 0.02 v)
<u>心合</u> ホールド機i	9E	平均恒心台/ 美効値表示 (心台時间200 ms) 試験終了時の測定電圧値をPASS、FAIL期間中ホールド
	∃E	武駅於」時の測定電圧値をPASS、FAIL期间中ホールト
抵抗計※2		
測定範囲		0.001 Ω~1.200 Ω
分解能		0.001 Ω
オフセットキ	トャンセル機能	0.000 Ω~1.200 Ω (OFF機能あり)
確度		± (2 % of reading + 0.003 Ω)
ホールド機能	能	試験終了時の測定抵抗値をPASS期間中ホールド
良否判定機	能 ※3	
抵抗値によ	る判定方式	ウインドウコンパレータ方式 ・上限基準値以上の抵抗値を検出した場合にFAIL判定 ・下限基準値以下の抵抗値を検出した場合にFAIL判定 ・FAILと判定したとき、出力を遮断しFAIL信号を発生 ・設定時間を経過し異常がなければ出力を遮断してPASS信号を発生
L阳甘淮/ (1)	IDDED/ 机中新用	
	IPPER)設定範囲	0.001 Ω~1.200 Ω
	OWER)設定範囲	0.001 Ω~1.200 Ω
分解能		0.001 Ω
判定確度		\pm (2 % of UPPER + 0.003 Ω)
サンプリン会る判定方式	グ電圧値によ	ウインドウコンパレータ方式 ・上限基準値以上の電圧値を検出した場合にFAIL判定 ・下限基準値以下の電圧値を検出した場合にFAIL判定 ・FAILと判定したとき、出力を遮断しFAIL信号を発生 ・設定時間を経過し異常がなければ出力を遮断してPASS信号を発生
上限基準値 (U	PPER)設定範囲	0.01 V~5.40 V
	OWER)設定範囲	0.01 V~5.40 V
分解能		0.01 V
判定確度		± (2 % of UPPER + 0.05 V)
校正		純抵抗負荷を用いて正弦波の実効値で校正
TXIL		
	PASS	PASSと判定されたときに約0.2秒間以上点灯 PASS HOLDに設定されているときは連続点灯
LED	UPPER FAIL	上限基準値以上の電圧値を検出し、 FAILと判定されたときに点灯
	LOWER FAIL	下限基準値以下の電圧値を検出し、 FAILと判定されたときに点灯
ブザー		 PASSと判定されたときに、設定されたパスホールド時間の間ブザーON 次の状態で連続的にブザーON PASS HOLDに設定されているときにPASSの判定UPPER/LOWER FAILの判定 FAILまたはPASSのブザーの音量は調整可能ただし、設定が共通のため単独の調整は不可

時間	
試験時間 設定範	囲 0.3 s∼999 s TIMER OFF 機能あり
確度	\pm (100 ppm of setting + 20 ms)
環境	
動作環境	屋内使用、過電圧カテゴリ川
仕様保証 温度	5 °C~35 °C
範囲 湿度	20 %rh~80 %rh (ただし、結露なきこと)
温度	0 °C~40 °C
動作範囲 湿度	20 %rh~80 %rh (ただし、結露なきこと)
/// 温度	-20 °C~70 °C
保存範囲湿度	90 %rh以下 (ただし、結露なきこと)
高度	2000 mまで
電源	
入力電圧範囲	85 Vac~250 Vac
無負荷服 消費電力 (READ)	160 VA L// N
定格負征	前時 最大280 VA
入力周波数範囲	47 Hz∼63 Hz
絶縁抵抗	30 MΩ以上 (500 Vdc) AC LINE-シャシ間
耐電圧	1390 Vac(2秒間) AC LINE-シャシ間
接地連続性	25 Aac / 0.1 Ω以下
安全性 ※4	以下の指令および規格の要求事項に適合
低電圧指令 2014/35	/EU ※5、EN61010-1 (Class I ※6、汚染度 2※7)
	※5 以下の指令および規格の要求事項に適合

EMC指令 2014/30/EU

EN61326-1(Class A * 8) 、 EN55011 (Class A * 8、 Group 1 * 9)

EN61000-3-2、EN61000-3-3

適合条件 1. 付属テストリードを使用 (TL11-TOS)

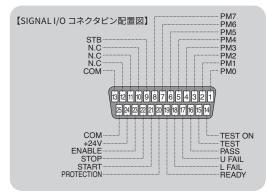
2. SIGNAL I/Oを使用する場合には、3 m未満のシールドケーブルを使用

外形寸法 (最大部)	430 (455) W×88 (140) H×270 (345) Dmm
質量	約9 kg

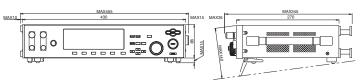
付属品

電源コード: 1本、テストリード: 1組(TL11-TOS)、ショートバー: 2本(OUTPUT端子-SAMPLING 端子間に接続されています)、電源ヒューズ: 2本(ヒューズホルダの中の予備を含めて2本)、セットアップガイド: 1冊、クイックリファレンス: 和文1冊、英文1冊、安全のために: 1冊、CD-ROM: 1枚

※1:出力に対する時間制限について


本器の出力部の放熱能力は、大きさ、質量、コストなどを考慮して定格出力の1/3の設計になっています。下表に示す制限内で使用してください。制限を超えて使用すると、出力部の温度が過上昇して内部保護回路が働く場合があります。

	出力時	間制限	
周囲温度 t (℃)	試験電流 I (A)	休止時間	最大試験時間
t ≤ 40°C/こて	15 < I ≦ 30	試験時間と同等以上	30 分以下
1 = 40 C/C C	l ≦ 15	不要	連続出力可能


※2:抵抗計の応答時間について

抵抗値は電圧測定値と電流測定値から演算して瞬時に算出しています。抵抗計の応答時間は電圧計、電流計の応答時間に準じます。

- ※3:抵抗値と電圧値による同時判定はできません。
- ※4:特注品、改造品には適用されません。
- ※5:パネルにCEマーキング/UKCAマーキングの表示のあるモデルに対してのみ。
- ※6:本器はClass I 機器です。本器の保護導体端子を必ず接地してください。正しく接地されていない場合安全性は保証されません。
- ※6: 汚染とは、絶縁耐力または表面抵抗率の低下を引き起こし得る異物(固体、液体、または気体)が付着した状態です。汚染度2は、非導電性の汚染だけが存在し、ときどき、結露によって一時的に導電性になり得る状態を想定しています。
- ※8:本器はClass A 機器です。工業環境での使用が意図されています。本器を住宅地で使用すると干渉の原因になることがあります。そのような場合にはラジオやテレビ放送の受信干渉を防ぐために、ユーザにより電磁放射を減少させる特別な装置が必要となることがあります。
- ※9:本器はGroup 1 機器です。本器は、材料処理または検査/分析のために電磁放射、誘導または静電結合の形で意図的に無線周波エネルギーを発生しません。

一外形寸法図一

単位:mm

接触電流(タッチカレント)および保護導体電流の各試験に対応

GPIB

RS232C

USB

リーケージカレントテスタ

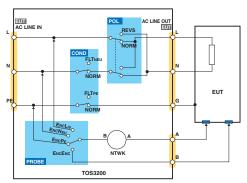
TOS3200

標準価格¥260,000

(税込¥286,000)

国際規格 IEC60990(『接触電流及び保護導体電流の測定』) に準拠したリーケージカレントテスタ

リーケージカレントテスタTOS3200は医用電気機器を除く一般電気機器向けの漏洩電流 (接触電流、保護導体電流) 試験を行うための試験器です。IEC、UL、JIS、電気用品安全法などの規格要求に対応した試験を行うことができます。本体内のメモリに情報技術、家電、AV、照明、電動工具、計測・制御機器のIEC/JIS規格と電気用品安全法の試験条件を51種類格納してありますので、簡単なパネル操作で規格試験を行うことができます。


- ●3種類の動作モードで漏洩電流を測定
- ●8種類の測定回路網を内蔵
- ●RMS測定は最大 30mA
- ●分かりやすい操作性
- ●試験の連続実行可能
- ●試験結果が保存可能
- ●51種類の規格試験条件を設定済み
- ●校正期限を管理
- ●USBも標準装備

LEAKAGE CURRENT TESTER

3種類の動作モードで漏洩電流を測定

●TC (接触電流) 動作モード*

被測定電気機器 (EUT) のエンクロージャ (可触部) とアース線を含む電源ライン間に流れる接触電流を人体模擬回路を通して測定します。人体模擬回路は規格に対応した8種類の測定回路網 (NTWK) を標準装備しています。また、EUTへの電源ラインの極性切替えと単一故障条件を試験器内部のリレーによって自動的に設定します。

【TC (接触電流) の測定ブロック図】

●PCC (保護導体電流) 動作モード^{*}

100V系電気機器の電源プラグ (NEMA5-15相当) を前面パネルのコンセントに接続することで、保護導体 (アース線) に流れる電流を測定します。世界各国のプラグにはマルチアウトレットをオプション (別売) を用意しています。

●METER (メータ) 動作モード

一般的なマルチメータのように、前面パネルにある測定端子AとBを使用して電圧や電流を測定します。電圧測定ではSELV(安全超低電圧)検出機能、電流測定では測定回路網(NTWK)を使用した測定機能を持っています。

**TC=Touch Current PCC=Protective Conductor Current

分かりやすい操作性

直感的に分かる試験条件メニュー画面とファンクション・キー/ ロータリーノブによる簡単な操作を可能にしました。

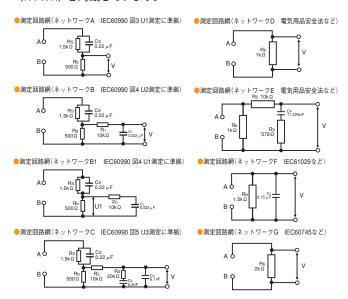
【TC (接触電流) 測定の設定画面】

試験の連続実行ができる

TC試験とPCC試験の試験条件を100種類の単独試験(ステップ) として、それらを1つのシーケンスプログラムとして自動試験することができます。シーケンスプログラムは500ステップ数を限度として最大100種類まで設定することができます。

自動試験では、EUT電源ラインを切らずに測定ポイント(プローブ設定)を切り換えることができ、試験の自動化に対応できます。

AUTO 2/2 PRG 01		EDIT
NTWKB MODERMS	RANGE AUTO	ABORT OFF
Ant Rs R1	Rs: 1.5 kΩ	Cs: 0.22 µF
Cs Rb		C1: 0.022 µF
Ви	R1: 10 kΩ	
TITLE NTWK	MODE RANG	E ABORT


【自動試験の設定画面】

RMS測定は最大30mA

DC/RMS測定では 30μ A~30mA、PEAK測定では 50μ A~90mAを 3ν ンジで測定が可能です。 ν ンジ切替えは固定 ν ンジ (FIX) と判定電流に対応させたオートレンジ機能 (AUTO) の2種類があります。RMS測定では"真の実効値"を実現しています。

8種類の測定回路網を内蔵

一般電気機器の接触電流測定用として8種類の測定回路網(NTWK)を内蔵しています。

※ U、U1: 測定回路網の基準点間の測定電圧

試験結果が保存可能

試験結果はもちろん、試験日時、試験条件を単独試験で50個、自動試験で50個までを記憶保存できます。試験結果をUSB等のインターフェースを使用して外部に記録として残すこともできます。

代表的な51種類の規格試験条件を設定済み

IEC60990をはじめ一般電気機器の中から代表的な51種類の試験条件が本体内のメモリにあらかじめ格納されています。これらを呼出すだけで規格試験条件が設定できます。

į	規格番号	適応電気機器
	IEC60950	情報技術機器
•	IEC60335	家庭用及び類似用途の電気機器
	IEC60065	オーディオ、ビデオ及び類似の電子装置
	IEC60745	手持型電動工具
1	IEC60598	照明器具
	IEC61010	計測、制御及び試験所使用電気機器
	電気用品安全法	電気用品
=	IEC61029	可搬型電動工具

【メモリに格納されている規格】

校正期限を管理できます

本器内に校正期限日時を設定し、その期限を過ぎると警告メッセージや使用を制限することができます。試験器自体が校正管理を行なう新しい機能です。

USBも標準装備

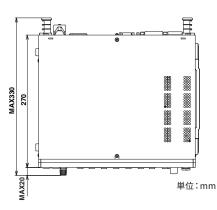
インターフェースは、SIGNAL I/O、GPIB、RS232Cの他にUSBも標準装備しています。

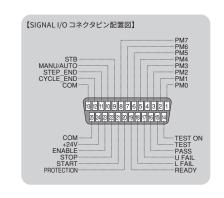
その他の多彩な機能

- ・測定電流の最大値を保持する「MAX機能」
- ・設定した電源電圧における測定電流値を換算する「CONV機能」
- ・メータ測定モードで設定したSELV (安全超低電圧) を超えると DANGERランプを点灯させる「SELV機能」
- ・測定回路網を自己診断する「CHECK機能」

LEAKAGE CURRENT TESTER

測定項目、	測定モード	:									
測定項目	"\J \L \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		TC (接触電流)、PCC (保護導体電流)、METERの3種								
*37C-3KH	TC		測定回路網(NTWK)を利用して基準抵抗の電圧降下を測定して算出								
測定方法	PCC		保護接地線に接続した基準抵抗の電圧降下を測定して算出								
MALIJA	METER		測定端子を使用して電圧、電流を測定								
測定モード			DC/RMS/PEAK (RMSは真の実効値)								
MALC I	ネットワー	-7Δ	基本測定素子: (1.5 kΩ//0.22 μF) +500 Ω								
			基本測定素子: (1.5 kΩ//0.22 μF) +500 Ω// (10 kΩ+22 nF)								
	ネットワークC										
測正凹路 網			基本測定素子: (1.5 kΩ//0.22 μF) +500 Ω// (10 kΩ+ (20 kΩ+6.2 nF) //9.1 nF)								
(NTWK)	ネットワークD ネットワークE ネットワークF		基本測定素子:1 kΩ								
(IN I WIK)			基本測定素子:1 kΩ//(10 kΩ+11.225 nF+579 Ω) 基本測定素子:1.5 kΩ//0.15 μF								
* l. P			基本測定素子: 2 kΩ								
ネットワー 電流測定部		产	抵抗:±0.1 %、コンデンサ0.15 μF:±2 %、その他:±1 %								
电派测止司			DC DMC: 20 A - COO A DEAK: FO A - 0FO A								
	RENGE1		DC,RMS:30 μΑ~600 μΑ、 PEAK:50 μΑ~850 μΑ								
測定範囲	RENGE2		DC,RMS:125 μΑ~6.00 mA、PEAK:175 μΑ~8.50 mA								
	RENGE3		DC,RMS:1.25 mA~30.0 mA、PEAK:1.75 mA~90.0 mA								
レンジ切り	替え		AUTO / FIX 選択可能、各レンジで測定範囲をはずれた場合には、測定値を点滅して警告								
測定電流(i) 表示/5		$ \begin{array}{c c} i < 1 \text{ mA}: \square \square \square \mu A / 1 \mu A, 1 \text{ mA} \leqq i < 10 \text{ mA}: \square. \square \text{ mA} / 0.01 \text{ mA} \\ 10 \text{ mA} \leqq i < 100 \text{ mA}: \square \square, \square \text{ mA} / 0.1 \text{ mA} \\ \end{array} $								
		DC	± (5.0 % of rdng + 20 μA)								
	RENGE1	RMS**3	15 Hz \leq f \leq 10 kHz: ± (2.0 % of rdng + 8 μ A)								
	KENOLI	KMOMO	10 kHz $<$ f \leq 1 MHz: \pm (5.0 % of rdng $+$ 10 μ A)								
		PEAK	15 Hz \leq f \leq 10 kHz: ± (5.0 % of rdng + 10 μ A)								
	DC		± (5.0 % of rdng + 50 μA)								
		RMS %3	15 Hz ≤ f ≤ 10 kHz: ± (2.0 % of rdng + 20 μ A)								
測定確度	RENGE2	KW3%3	10 kHz < f ≤ 1 MHz: \pm (5.0 % of rdng + 20 μ A)								
%2		PEAK	15 Hz \leq f \leq 1 kHz: ± (2.0 % of rdng + 50 μ A)								
		PEAR	1 kHz < f ≤ 10 kHz: ± (5.0 % of rdng + 50 μ A)								
		DC	± (5.0% of reading+0.5mA)								
		DMC X 2	$15 \text{ Hz} \le f \le 10 \text{ kHz} : \pm (2.0 \% \text{ of rdng} + 0.2 \text{ mA})$								
	RENGE3	RMS ** 3	10 kHz $< f \le 1$ MHz: \pm (5.0 % of rdng + 0.2 mA)								
		DEAK	$15 \text{ Hz} \le f \le 1 \text{ kHz} : \pm (2.0 \% \text{ of rdng} + 0.5 \text{ mA})$								
	PEAK 抗		$1 \text{ kHz} < f \le 10 \text{ kHz}$: $\pm (5.0 \% \text{ of rdng} + 0.5 \text{ mA})$								
入力抵抗			$1~\text{M}\Omega \pm 1~\%$								
入力容量			< 200 pF								
コモンモー	ド除去比		≦ 10 kHz:60 dB以上/10 kHz~1 MHz:40 dB以上								
判定機能											
判定方法			ウインドコンパレータ方式での上限・下限電流設定によるPASS/FAIL判定								
判定			上限設定以上の電流ではU-FAIL、下限設定以下の電流ではL-FAIL判定								
表示			U-FAIL/L-FAIL/PASS表示、ブザー鳴動								
PASSホール	ルド		PASS判定を保持する時間を0.2 s~10.0 sまたはHOLDに設定可能								
	RENGE1		DC,RMS:30 μΑ~600 μΑ、PEAK:50 μΑ~850 μΑ								
設定範囲	RENGE2		DC,RMS:151 μA~6.00 mA、PEAK:213 μA~8.50 mA								
	RENGE3		DC,RMS:1.51 mA~30.0 mA、PEAK:2.13 mA~90.0 mA								
判定確度			測定確度に準ずる (測定確度のrdngをUPPER setに読み替えてください)								
AB間電圧流	則定										
測定範囲			DC/RMS:10.00 V~300.0 V, PEAK:15.00 V~430.0 V								
確度※4			±(3 % of rdng + 2 V)、測定レンジはAUTOに固定								
入力インピ	ーダンス		約40 MΩ								
SELV検出			SELVを設定してその値を超えたらDANGERランプ点灯								
SELV設定的	節囲		10 V~99 V、1 Vステップ、OFF機能あり								
タイマー、		態能、メ=	I								
タイマー	試験待ち	時間	設定範囲: 0 s~999 s、確度: ± (100 ppm of set + 20 ms)								
	試験時間		設定範囲:1 s~999s/OFF機能、確度:±(100 ppm of set + 20 ms) AUTO:最大100ステップの試験条件を自動実行								
試験機能		-	MANU:TC、PCC、METER の各測定を単独実行								
	試験条件	:	AUTO:最大100ステップの試験条件を最大100通り (トータルステップ数:500) MANU:最大100通りの試験条件を記憶								
メモリ	試験結果	ļ.	試験結果を、試験終了時の判定結果出力中に保存するか選択可能 AUTO:最大50プログラム分を試験結果を記録可能 MANU:最大50試験分の試験結果を記録可能								
			·								


その他の様	機能							
C 49 10 49 10	% NO	測定電流値をあらかじめ設定した電源電圧における値に換算。METER測定では無効						
測定值換算	章 (CONV)	設定範囲:80.0 V~300.0 V、OFF機能あり						
		測定期間中の測定値を以下のように選択可能						
MEASURE	MODE	NORM: 測定期間中の測定値を表示						
MEASURE	MODE	MAX:測定期間中の最大値を表示						
雪酒 正 溢 ‡	1選択 (POL)	EUT電源設定:正相(NORM)/逆相(REVS)						
		EUT電源状態設定:正常(NORM) / 電源線ニュートラル側断線(FLTLN) / 保						
単一故障状	態選択 (COND)	護接地線断線 (FLTEA)						
接地チェッ	10	エンクロージャ↔電源ライン間接触電流測定のみ有効 測定端子間の電流値を測定して、接地チェックを行いEUTのエンクロージャが 接地していたらCONTACT FAIL 発生						
MEASURE	CHECK	本製品のA,B端子間の測定機能をチェックして、異常があれば保護状態へ移行A,B端子間をショートして実施						
電源電圧源	則定(EUT)	測定範囲:80.0 V~250.0 V、分解能:0.1 V、確度:±(3% of rdng + 1 V)						
電源電流源	則定 (EUT)	測定範囲: 0.1 A~15.00 A、分解能: 0.01 A、確度: ± (5 % of rdng + 30 mA)						
= 1 ***	/±±=:\	測定範囲:10 W~1500 W						
電力測定	(有効電力)	確度 (電源電圧80V以上、負荷力率1にて):±(5% of rdng + 8 W)						
	記録	校正日時、試験実施日時を記録、 記録可能日時: 2099年まで						
システム		校正期限を設定可能、期限を過ぎると電源投入時に警告						
クロック	校正期限設定	CAL.PROTECTION ON: 期限を過ぎると電源投入時に警告して保護状態に移行						
		CAL.PROTECTION OFF: 期限を過ぎると電源投入時に警告表示						
保護動作	1	リレー動作異常、オーバーロード、オーバーレンジ、測定機能チェック、内蔵電池切れ						
インターフ	ェース							
RS232C		D-Sub 9ピンコネクタ (EIA-232Dに準拠)、通信速度:9600 / 19200 / 38400 bps用)						
GPIB		IEEE Std.488-1978に準拠 (SH1,AH1,T6,TE0,L4,LE0,SR1,PP0,DC1,DT0,C0,E1)						
USB		USB Specification 2.0						
REMOTE		6ピンMINIDINコネクタ (HP21-TOS (別売オプション) 専用)						
SIGNAL I/	/0	25ピンD-Subコネクタ						
一般								
	定格電圧/電流	A-B端子間: 250 V、端子-シャシ間: 250 V、100 mA						
測定端子	測定カテゴリ	CATII						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	有効端子表示	型に有効な端子をLEDランプで表示						
	仕様保証範囲	温度:5°C~35°C、湿度:20 % rh~80 % rh (結露無し)						
	動作範囲	温度:0°C~40°C、湿度:20 % rh~80 % rh (結露無し)						
環境	保存範囲	温度: -20 °C~70 °C、湿度: 90 % rh以下(結露無し)						
	設置場所	<u>屋内、高度2000 mまで</u>						
	本体電源	公称入力定格: 100 Vac~240 Vac、50 / 60 Hz、消費電力: 最大70 VA						
電源	-T-PT NE #5	公称入力定格: 100 Vac ~240 Vac、50 / 60 Hz、 / / / / / / / / / / / / / / / / / / /						
HE MA	EUT用	定格出力容量: 1500 VA、最大電流: 15 A、突入電流: 最大70 Apeak (20 ms以内)						
絶縁抵抗		30 MΩ以上 (500 Vdc) (ACラインーシャシ間、測定端子ーシャシ間)						
耐電圧		1390 Vac、2秒間、20 mA以下 (ACラインーシャシ間)						
接地連続性	#	25 Aac / 0.1 Ω以下						
		以下の規格の要求事項に適合						
安全性 ※!	5	EN61010-1 (Class I ※6、污染度2※7)						
外形寸法、	質量	320(345)W×88(105)H×270(330)Dmm、約5 kg						
付属品	電源コード:2本、テストリード:1組(TL21-TOS:赤黒、各1本、ワニロク リップ付)、フラットケーブル:1組、予備ヒューズ:1本、セットアップガ ド:1冊、クイックリファレンス:和文1枚、英文1枚、安全のために:1冊、 CD-ROM:1枚、回路原理図シール:1枚							


- ・ウォームアップ時間は30分以上とします。 ・EUTは被試験器を表します。
- ※1:電流測定において、特に測定モードがPEAKに設定されている場合や測定回路網がAに選択されている場合は、電源ライン波形、本製品とEUT間の配線環境などの影響により測定値が安定しない場合があります。
 ※2:本製品内蔵の電圧計確度を基に、ネットワークA、B、B1、C およびPCC 測定において電流換算した値を示します。
 ※3: DC 測定はDC モード確度に準じます。
 ※4: A B 端子間をオープン状態で電圧測定した場合は、誘導電圧の影響を受けやすくなります。
 ※5: 特別品、改造品には適用されません。

- ※5: 有法品、改造品には週用されません。
 ※6: 本製品はClass I 機器です。本製品の保護導体端子を必ず接地してください。正しく接地されない場合、安全性は保障されません。
 ※7: 汚染とは、絶縁耐力または表面抵抗率の低下を引き起こし得る異物(固体、液体、または気体)が付着した状態です。汚染度2は、非導電性の汚染だけが存在し、ときどき結露によって一時的に導電性になり得る状態を 想定しています。

一外形寸法図一

Others

高電圧デジタル電圧計

149-10A

●標準価格 ¥ 250,000 (税込 ¥275,000)

高確度タイプ (別売) もご用意しています。詳細はお問い合わせ下さい。

●10kV Maxの高電圧 (AC / DC) を測定 ●4 ¹/₂桁の 大型LED表示 ●高い測定確度と高入力抵抗 ●軽量 な3kg ●スペースを取らないコンパクト設計 ●優れ たメンテナンス性

仕様	
方式	二重積分方式 (サンプリング周期:3回/秒)
直流電圧	測定範囲: 0.5 kV ~ 10.000 kV 確度: ± (0.5 % rdg + レンジの0.03 %) 入力抵抗: 1000 MΩ ± 2 %
交流電圧	測定範囲: 0.5 kV ~ 10.000 kV 確度: ± (1 % rdg + レンジの0.05 %) 周波数特性: 50 Hz ~ 60 Hz (平均値応答正弦波実効値指示) 入力抵抗: 1000 MΩ ± 2 %
電源	100 V ± 10 % 約10 VA
寸法(最大部)	134(140)W×164(190)H×270(325)Dmm
質量	約3 kg
付属品	TL05-TOS テストリード×1組、 HTL-2.5DH 高圧ケーブル×1本

UL1492用負荷抵抗器

RL01-TOS

●標準価格 ¥ 100,000 (税込¥110,000)

本器は、UL1492第125節2-181項に述べられている、生産ラインにおける耐電圧試験で使用する"耐電圧試験器"の、出力電圧をチェックするための可変形負荷抵抗器です。(UL1270、UL1409、UL1410などにも準拠)

仕様	
抵抗器	120 kΩ/279 kΩ/648 kΩ/1,500 kΩ 159 kΩ/369 kΩ/858 kΩ/1,989 kΩ 210 kΩ/489 kΩ/1,137 kΩ/2,148 kΩ
抵抗值精度	120 kΩに設定のとき公称値+1 %、-0 % その他の値に設定のとき、公称値±1 %
最大使用電圧	1300 V (連続定格)
最大過負荷電圧	1400 V/5秒間 (但し、1分間以内に繰り返しのないこと)
寸法(最大部)	200 (210) W×100 (120) H×260 (295) Dmm
質量	約2.6 kg
付属品	TL04-TOS テストリード×2組 TL05-TOS テストリード×1組

絶緣抵抗計用校正抵抗器

- 929-1M (1 MΩ)
- ●標準価格 ¥15,000 (税込 ¥16,500)
- 929-10M (10 MΩ)
- ●標準価格¥15,000 (税込¥16,500)
- 929-100M (100 MΩ)
- ●標準価格 ¥15,000 (税込 ¥16,500)

929シリーズは絶縁抵抗計を校正するための標準抵抗器です。

仕様	
抵抗値	1 MΩ (929-1M) /10 MΩ (929-10M) 100 MΩ (929-100M)
抵抗值確度	1 % (25 °C ± 10 °Cにて)
温度係数	100 ppm/℃以下
電圧係数	1 ppm/V以下
最高使用電圧	1.2 kV
寸法(最大部)	64W×24H×30Dmm

※TOSシリーズ本体に直接実装はできません。 テストリードを使用してください。

ラックマウントブラケット

形名	JIS規	格	EIA規格					
形石	ブラケットの形名	標準価格	ブラケットの形名	標準価格				
TOS9300	KRB150-TOS	¥12,000 (税込 ¥13,200)	KRB3-TOS	¥9,000 (税込 ¥9,900)				
TOS9301	KRB150-TOS	¥12,000 (税込 ¥13,200)	KRB3-TOS	¥9,000 (税込 ¥9,900)				
TOS9301PD	KRB150-TOS	¥12,000 (税込 ¥13,200)	KRB3-TOS	¥9,000 (税込 ¥9,900)				
TOS9302	KRB150-TOS	¥12,000 (税込 ¥13,200)	KRB3-TOS	¥9,000 (税込 ¥9,900)				
TOS9303	KRB150-TOS	¥12,000 (税込 ¥13,200)	KRB3-TOS	¥9,000 (税込 ¥9,900)				
TOS9303LC	KRB150-TOS	¥12,000 (税込 ¥13,200)	KRB3-TOS	¥9,000 (税込 ¥9,900)				
TOS9320	KRB100-TOS	¥12,000 (税込 ¥13,200)	KRB2-TOS	¥6,000 (税込¥6,600)				
TOS5302	KRA200-TOS	¥22,000 (税込 ¥24,200)	KRA4-TOS	¥22,000 (税込 ¥24,200)				
TOS5301	KRA200-TOS	¥22,000 (税込 ¥24,200)	KRA4-TOS	¥22,000 (税込 ¥24,200)				
TOS5300	KRA200-TOS	¥22,000 (税込 ¥24,200)	KRA4-TOS	¥22,000 (税込 ¥24,200)				
TOS5200	KRA200-TOS	¥22,000 (税込 ¥24,200)	KRA4-TOS	¥22,000 (税込 ¥24,200)				
TOS6200A	KRB100-TOS	¥12,000 (税込 ¥13,200)	KRB2-TOS	¥6,000 (税込 ¥6,600)				
TOS6210	KRB100-TOS	¥12,000 (税込 ¥13,200)	KRB2-TOS	¥6,000 (税込¥6,600)				
TOS3200	KRA150-TOS	¥32,000 (税込 ¥35,200)	KRA3-TOS	¥32,000 (税込 ¥35,200)				

Options

テストリード

TL01-TOS (Max.AC5kV ∕ 1.5m)
●標準価格 ¥7,000 (税込 ¥7,700)

TL02-TOS (Max.AC5kV/3m)
●標準価格¥9,000 (税込¥9,900)

TL03-TOS (Max.AC10kV ∕ 1.5m)
●標準価格 ¥12,500 (税込 ¥13,750)

TL04-TOS (Max.AC5kV ∕ 1.5m) TOS1200用
●標準価格 ¥10,000 (税込 ¥11,000)

TL05-TOS (Max.AC5kV ∕ 1.5m)149-10A用 ●標準価格 ¥7,000 (稅込 ¥7,700)

TL06-TOS (Max.AC5kV ∕ 0.5m)
●標準価格 ¥10,000 (税込 ¥11,000)

TL07-TOS (Max.AC5kV ∕ 1.5m) ●標準価格¥5,000 (税込¥5,500)

TL08-TOS (Max.AC1kV ∕ 1.5m) TOS7200用 ●標準価格 ¥8,000 (税込 ¥8,800)

TL11-TOS (Max.30A ∕ 1.5m) TOS6200/6200A用
●標準価格 ¥14,000 (税込 ¥15,400)

TL12-TOS (Max.60A ∕ 1.5m) TOS6210用
●標準価格¥30,000 (税込¥33,000)

TL13-TOS (Max.40A ∕ 1.6m) TOS9302/9303/9303LC用
●標準価格¥27,000 (税込¥29,700)

■TL21-TOS (グリップ付/1.5m)TOS3200用 ●標準価格¥13,000 (税込¥14,300)

TL22-TOS (Max.1000V·10A ∕ 1.7m) TOS9303LC用
●標準価格 ¥13,000 (税込 ¥14,300)

TL31-TOS (Max.AC5kV ∕ 1.5m)
●標準価格¥7,000 (税込¥7,700)

TL32-TOS (Max.AC5kV/3m)
●標準価格¥9,000 (税込¥9,900)

TL33-TOS (Max.AC5kV ∕ 0.5m) TOS9320用
●標準価格 ¥10,000 (税込 ¥11,000)

HTL-2.5DH (Max.AC10kV ∕ 1.5m)
●標準価格¥9,500 (税込¥10,450)

テストプローブ

HP01A-TOS (Max.AC4kV·DC5kV ∕ 1.8m)
●標準価格 ¥33,500 (税込 ¥36,850)

HP02A-TOS (Max.AC4kV·DC5kV/3.5m) ●標準価格¥35,500 (税込¥39,050)

※リモコン用変換アダプタ [DD-5P/9P] が必要です。

HP11-TOS (Max.DC1kV·100mA/1.8m)
●標準価格¥28,000 (税込¥30,800)

HP21-TOS (Max.250Vrms·100mA ∕ 1.8m) ●標準価格 ¥32,000 (税込 ¥35,200)

■ LP01-TOS (Max.AC30A/2m)
●標準価格¥25,000 (税込¥27,500)

LP02-TOS (Max.AC60A/2m) ●標準価格¥48,000 (税込¥52,800)

FP01-TOS フラットプローブ TOS3200/9303LC用
●標準価格¥3,000 (税込¥3,300)

警告灯ユニット

PL01-TOS (AC100V用)
●標準価格¥55,000 (税込¥60,500)

PL02A-TOS (DC24V用)
●標準価格¥38,000 (稅込¥41,800)

Options

リモートコントロールボックス

RC01-TOS[※] (片手操作用 ∕ 1.5m)
●標準価格 ¥18,700 (稅込 ¥20,570)

RC02-TOS[※] (両手操作用 ∕ 1.5m)
●標準価格 ¥22,000 (稅込 ¥24,200)

※リモコン用変換アダプタ (DD-5P/9P) が必要です。

DINコネクタケーブル

DD-3 5P リモコン延長ケーブル(3m)●標準価格¥6,000 (税込¥6,600)

リモコン用変換アダプタ

DD-5P 6P 変換アダプタ(DIN - MIni DIN)●標準価格¥9,000 (税込¥9,900)

DD-5P/9P 変換アダプタ(DIN - MIni DIN)
●標準価格¥7,000 (税込¥7,700)

DIN 変換ケーブル DD-5P/9P は、下記のオプション製品を TOS9300/TOS5300/TOS5200シリーズに接続するための DIN (5 ピン \rightarrow 9 ピン) 変換ケーブルです。

- ・リモートコントロールボックス (RC01-TOS/RC02-TOS)
- 高電圧テストプローブ(HP01A-TOS/HP02A-TOS)
- 接触電流試験用テストプローブ(HP21-TOS)

マルチアウトレット

OT01-TOS TOS3200/TOS9303LC用

ターミナルユニット

TU01-TOS (TOS5300/TOS5200シリーズ用) ●標準価格¥28,000 (税込¥30,800)

TOS5300/5301/5302/5200の25ピンSIGNAL I/Oコネクタを、TOS5050A/5051Aの14ピンSIGNAL I/Oコネクタに変換するターミナルユニットです。TOS5050A/5051Aで行っていた外部コントロールをTOS5300/5301/5302/5200で行う為には、このターミナルユニットが必要です。

オプション一覧表

	リモートコ	ントロール	警告灯、ブサ	「一、ターミナ	ル・ユニット			テストフ	プローブ									テスト	リード						
形名	RC01/ 02-TOS	DD- 3 5P	PL01- TOS	PL02A- TOS		HP01A/ 02A-TOS	HP11- TOS	HP21- TOS	LP01- TOS	LP02- TOS		TL01/02/ 03-TOS		TL05- TOS	TL06- TOS	TL07- TOS	TL08- TOS	TL11/12- TOS	TL13- TOS	TL21- TOS	TL22- TOS	TL31/ 32-TOS		TL51 -TOS	HTL2.5- DH
TOS9300	0			0		0																0	0		
TOS9301	0			0		0																0	0		
TOS9301PD	0			0		0																0	0		
TOS9302	0			0		0													0			0	0		
TOS9303	0			0		0													0			0	0		
TOS9303LC	0			0		0		0			0								0		0	0	0		
TOS9320																0						0	0		
TOS5302	0			0	0	0																0			
TOS5301	0			0	0	0																0			
TOS5300	0			0	0	0																0			
TOS5200	0			0	0	0																0			
TOS6200A	0	0							0	0								0							
TOS6210	0	0							0	0								0							
TOS7200	0	0					0										0								
TOS3200								0			0									0					
149-10A														0											0
RL01-TOS													0	0	0										

:変換アダプタDD-5P/6Pが必要です。

:ケーブル定格内で使用可能です。

:変換アダプタDD-5P/9Pが必要です。

耐電圧試験用品のご紹介 高圧用ゴム手袋 電気用ゴム長靴

こちらの商品のお問い合わせは下記までお願いいたします。 お問い合わせ先: ヨツギ株式会社 〈URL〉 http://www.yotsugi.co.jp

Memo

【ご注意】■仕様、デザインなどは改善等の理由により、予告なく変更する場合があります。■諸事情により名称や価格の変更、また生産中止となる場合があります。■ご注文、ご契約の際の不明点等については弊社営業までご確認ください。また、ご確認のない場合に生じた責任、責務については負いかねることがあります。あらかじめご了承ください。■カタログに記載されている会社名、ブランド名は商標または登録商標です。■カタログに記載されている奔社製品は、使用に当たっての十分な知識を持った監督者のもとでの使用を前提とした業務用機器・装置であり、一般家庭・消費者向けに設計、製造された製品ではありません。■印刷の都合上、カタログに記載されている写真と現品に色・質感等での差異がある場合があります。■このカタログの内容について正確な情報を記載する努力はしておりますが、万一誤橋、誤記等などのお気付きの点がございましたら、弊社営業所までご一報ください。

KIKUSUI 菊水電子工業株式会社

本 社 〒 224-0023 横浜市都筑区東山田 1-1-3 TEL. (045) 593-0200 首都圏東営業所 〒 224-0032 横浜市都筑区東小田 1-1-3 TEL. (045) 482-6458 首都圏南営業所 〒 224-0023 横浜市都筑区東山田 1-1-3 TEL. (045) 593-7543 東 北 営 業 所 〒 981-3133 仙台市泉区泉中央 3-19-1 リシュルーブル ST TEL. (022) 374-3441 北関東営業所 〒 330-0801 さいたま市大宮区土手町 1-49-8 G・M 大宮ビル 5 TEL. (048) 644-0601 東 海 営 業 所 〒 465-0097 名古屋市名東区平和が丘 2-143 TEL. (052) 774-8600 関西 営 業 所 〒 564-0063 吹田市江坂町 1-12-38 江坂ソリトンビル 2 TEL. (06) 6339-2203 九 州 出 張 所 〒 812-0039 福岡市博多区冷泉町 7-19 NR ビル 2 TEL. (092) 263-3680