

ファンレス・ワイドレンジ直流安定化電源 PFR シリーズカタログ

DC Power supply

電圧・電流の可変領域が 5 倍のワイド出力! インタフェースを豊富に搭載 / シーケンス運転も簡単設定の ファンレス・ワイドレンジスイッチング直流安定化電源

ファンレス・ワイドレンジ直流安定化電源 PFR Series

電圧・電流の可変領域が 5 倍のワイド出力!

自然空冷で静音動作の小型ワイドレンジ直流安定化電源

PFR シリーズは、最大定格電力内で広範囲の電圧出力・ 電流出力が可能なスイッチング方式の直流安定化電源 です。最大電圧は50Vと250Vの2モデル、100W 内において電圧・電流をフレキシブルに出力すること が可能です。(電圧電流可変領域は5倍ワイド出力) また、ファンの動作音がない自然空冷方式にて設計、

静音動作を実現しておりますので、雑音のない環境で 試験を行いたいというニーズに対応しております。イ ンタフェースは RS-232C と USB ポートを標準装備、 G タイプには LAN ポートと GP-IB も搭載、パソコン または PLC から制御を行うことができます。

■標準モデル PFR-100L50 (50V/2A-10V/10A)

■GP-IB/LAN 搭載モデル PFR-100L50G (50V/2A-10V/10A)

■標準モデル PFR-100M250 (250V/0.4A-50V/2A)

■GP-IB/LAN 搭載モデル PFR-100M250G (250V/0.4A-50V/2A)

ファンレス・ワイドレンジ直流安定化電源

PFR SERIES

型名		定格電力	出力 ^{※1} (電圧/電流)	リップル		入力変動		負荷変動		インタフェース				
	希望小売価格 (円)			CV	CV CC C		СС	CV	СС	USB/	LAN/	外形寸法 W×H×D(mm) 	消費電力	質量
	(1.57			mVrms	mArms	mV	mA	mV	mA	RS-232 GP-IB				
PFR-100L50	く 価 だ 格	100W	0V-50V/0A-10A	4	10	8	8	10	10	0	-			
PFR-100L50G**2	きい。問	100W	0V-50V/0A-10A	4	10	8	8	10	10	0	0	71124201	150\/A	∜52 El.≈
PFR-100M250		100W	0V-250V/0A-2A	15	2	30	1.2	33	3.2	0	-	71×124×301	150VA	約2.5kg
PFR-100M250G**2	い合わせ	100W	0V-250V/0A-2A	15	2	30	1.2	33	3.2	0	0			

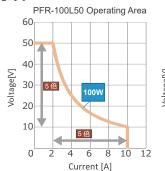
※1: 出力電圧、電流は定格電力内での最大値となります。※2: GP-IBを使用する場合、PFRシリーズ専用GP-IBケーブル(GTL-258)が必要です。

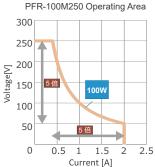
特長・機能 **Features**

自然空冷方式(ファンレス)による静音動作

ファンの回転音が気にならない自然空冷方式です。

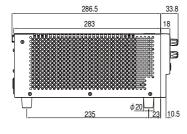
異音や騒音を測定する際に、ほぼ無音の電力源として使用 可能です。

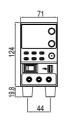



広範囲の電圧・電流設定が可能!

定格電力範囲内で電圧電流を幅広い範囲で出力することが 可能です。たとえば PFR-100L50 の場合、10V/10A の CV/CC 電源として使えますし、50V/2A の CV/CC 電源としても使

えます。


パネル説明 Panel


外形寸法 Dimensions

付属品 Accessories

【共通】

· CD-ROM

(取扱説明書、プログラミングマニュアル、USB ドライバ、 テストスクリプト)

- ・電源コード
- ・リアパネル用テストリード (GTL-134)

[PFR-100L50]

・基本アクセサリキット(PFR-001) [出力端子カバー ×1、ソケット ×1、保護カバー ×2、 ショートバー ×1]

・テストリード (GTL-104A): 最大 10A

[PFR-100M250]

・基本アクセサリキット(PFR-002) [出力端子カバー ×1、ソケット ×1、保護カバー ×2、 ショートワイヤ ×1]

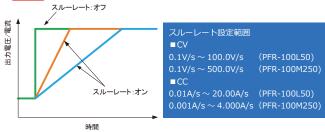
・テストリード (GTL-105A): 最大 3A

プッシュスイッチ付エンコーダ採用!電圧、電流を素早く設定

電圧、電流設定にそれぞれプッシュスイッチ付ロータリーエンコーダを採用、プッシュスイッチを押すことで、設定桁が移 動するので直感的に素早く設定することができます。

素早い設定切替え! 3点プリセットメモリ

3点のプリセットメモリに電圧、電流、OVP、OCP、UVL の設定値の保存と呼出しができます。



保存:①設定後に[Shift]を押す いずれかを3秒以上長押し 呼出 :①[Shift] を押す ②呼出元の丰一(M1,M2,M3)の いずれかをプッシュ

出力スルーレート設定

出力電圧/電流のスルーレートのオン/オフができます。 急激な電圧/電流の変化による負荷の損傷を抑えます。

プログラミング言語不要の自動運転!テスト機能

時間に合わせて、電圧、電流設定値を自動更新させるテスト機能を装備しております。本器のメモリ内 には最大 100 ステップのテストデータを 1 個保存できます。 Microsoft® Excel® で編集可能な CSV 形式、 設定を順番に記述していくだけなので難しいプログラミング言語は使いません。編集した CSV ファイル を USB メモリに保存して PFR 本体に読み込ませれば、簡易的な自動運転をすることができます。

STEP 登録数 1~100 –プ回数 ∞,1 ~ 10 億 最短 0.05 秒 分解能 0.01 秒 ※最短 0.05 秒、分解能 0.01 秒で設

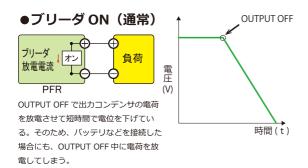
定することは可能ですが、電源の出 力は立上り・立下り速度や負荷条件 に依存します。

●USB メモリ使用時の実行までの流れ

【テストデータ作成例】Microsoft® Excel®で編集し、CSV形式で保存。

Step	Point	Output	Time (sec)	Voltage (V)	Current (A)	OVP (V)	OCP (A)	Bleeder	IV Mode	Vsr up (V/s)	Vsr down (V/s)	Isr up (A/s)	Isr down (A/s)	5V
1	Start	On	0.5	0	0.2	MAX	MAX	ON	CVHS	MAX _	MAX -	MAX	MAX	
2		On	1	5					CVLS	5				
3		On	0.5	4.5					CVHS	MAX				スルーレート 5V/s
4		On	0.5	5										37/5
5		On	0.5	4										
6		On	0.5	5										スルーレート
7		On	0.5	3.5										2V/s
8		On	0.5	5										
9		On	0.5	3					'					
10		On	0.5	5										
11		On	0.5	2.5) <i>-</i>									(2) (2)te
12		On	0.5	5										() 10 (2) 50 (3) 188m ³ (3) 188m ³ (4) 188m ³ (
13	End	On	2	0					CVLS		2			No.

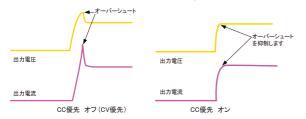
電圧、抵抗、接点でコントロール!外部アナログ制御


外部電圧による電圧・電流制御、外部抵抗(10kΩ)による電圧・電流制御、外部接点による出力 ON/OFF、シャットダウン信号による出力停止が可能です。また、出力電圧・電流のモニタ出力、ステータス信号(CV/CC、ALM、OUTPUT ON、POWER OFF)の出力も可能です。

※外部コントロール端子およびモニタ用端子の(一)側電位は、出力(一)端子と同電位になります。事故や誤動作防止のため、接続機器はフローティング状態でご使用ください。

バッテリーを接続される方に便利!ブリーダ ON/OFF

本器の出力にはコンデンサが接続されており、OUTPUT OFF 時にその電荷を放電させるためのブリーダ回路が搭載されています。 通常は一定の電流を引き抜いていますが、ブリーダ回路を OFF すると、出力 OFF 時に接続されているバッテリやコンデンサ、電池等の放電を少なくできます。


●ブリーダ OFF ブリーダ m電流 * オフ 東 下リッテリなどを接続した場合でも、放電を少なくできる。ただし、何も接続されていなくても本器内部のコンデンサに電

オーバーシュートを抑制! CV/CC 優先切替

定電圧 (CV) 優先モードと定電流 (CC) 優先モードを選択することが可能です。

出力 ON 時、CC 動作で立ち上るダイオード負荷で、ターンオン時のオーバーシュートを抑制します。

パネル操作ミスの防止に!パネルロック機能

フ操作のみ有効です。

荷が蓄積されているので注意が必要。

パネルロック機能は、偶発的なパネル操作ミスを防止します。 パネルロックが有効の時は、"Lock/Local" キー以外のすべて のキーと電圧電流ツマミを無効にします。"Output" キーはオ

力率改善、ワールドワイド入力

カ率改善回路を搭載し定格出力時の力率は 0.98 です。入 力電源は AC100V ~ 240V のワールドワイド対応となっ ています。(電源電圧に適した電源ケーブルが必要です。)

最大 31 台のリモートコントロール! マルチドロップ接続

RS-485 用の 8 ピンコネクタを使用して、最大 31 台のデイジーチェイン接続が可能です。チェイン内の最初のユニットは、USB/GP-IB/LAN で PC と接続、もしくは LAN で PLC と接続します。

[注:コントローラ (PC・PLC) と MASTER 間を RS-232C/485 で接続した場合、マルチドロップ接続はできません。]

ラック組込みに対応! AC ファンを搭載したラックマウントキット

AC ファンを搭載したラックマウントキットです。PFR を最大 5 台搭載可能です。(ファン駆動用に AC 入力があります。PFR を 2 台以上搭載する場合は必ずファンを動作させてください。AC 入力タイプは 100V 用、200V 用があります。)

定格 **Specifications**

Model		単位	100L50	100M250				
定格出力電圧		V	50	250				
定格出力電流		Α	10	2				
定格出力電力		W	100	100				
パワーレシオ		_	5	5				
CVモード		単位	100L50	100M250				
入力変動 (*1)		mV	8	30				
負荷変動 (*2)		mV	10	33				
	p-p (*4)	mV	50	150				
リップルノイズ (*3)	r.m.s. (*5)	mV	4	15				
		ppm/℃	100	100				
リモートセンシング補償電圧		V V	1	1				
立ち上がり時間 (*6)	定格負荷時	ms	50	100				
<u> </u>	無負荷時	ms	50	100				
 立ち下がり時間 (*7)	定格負荷時	ms	100	200				
<u> </u>	無負荷時		500	1000				
過渡応答時間 (*8)	無貝仰吋	ms						
		ms	1.5	2				
CCモード		単位	100L50	100M250				
入力変動 (*1)	-	mA	8	1.2				
負荷変動 (*9)	T	mA	10	3.2				
リップルノイズ	r.m.s.	mA	10	2				
温度係数 (30 分以上のウォー	ムアツノ後)	ppm/℃	200	200				
保護機能	I	単位	100L50	100M250				
過電圧 (OVP)	設定範囲	V	5 ~ 55	5 ~ 275				
	設定確度	V	0.50	2.5				
過電流 (OCP)	設定範囲	Α	1 ~ 11	$0.2 \sim 2.2$				
	設定確度	Α	0.20	0.040				
低電圧 (UVL)	設定範囲	V	0 ~ 52.5	0 ~ 262.5				
オーバーヒート (OTP)	動作	本体内 90℃にて出カオフ						
AC 入力異常 (AC-FAIL)	動作							
シャットダウン制御 (SD)	動作	シャット	ダウン信号で出	カオフ				
出力制御 (POWER LIMIT)	動作	出カオフ						
田分前師 (FOWER CINIT)	設定値(固定)	定格電力の 103%						
外部アナログ制御およびモニク	ター出力	単位	100L50	100M250				
外部電圧による出力電圧制御	確度	V	0.50	2.50				
外部電圧による出力電流制御	確度	mA	100	20				
外部抵抗による出力電圧制御	確度	V	1.00	5.00				
外部抵抗による出力電流制御	確度	mA	200	40				
出力電圧モニター	確度	V	0.10	0.10				
出力電流モニター	確度	V	0.10	0.10				
シャットダウン制御	LOW (0V to 0.5V) レベルまたは短絡でアウトプットオフ							
出力オン・オフ制御	ロジック信号での選択が可能							
アラームクリア制御	LOW (0V to 0.5)	LOW (0V to 0.5V) レベルまたは短絡でアラームクリア						
CV/CC/ALM/PWR ON/OUT	フォトカプラに							
ON ステータス出力	30V, 最大電流 8			,				
Front Panel		単位	100L50	100M250				
* -	4 45	V	0.00-52.50	0.0-262.5				
表示	4 桁	Α	0.00-10.50	0.000-2.100				
電圧確度	0.1% of reading+	mV	40	200				
電流確度	0.2% of reading+		20	2				
-	緣 LED: CV, CC, VSR, ISR, DLY, RMT, LAN, M1, M2,							
インジケータ	M3, RUN / 赤 LED: ALM, ERR							
ツマミ	電圧、電流 各1							
USB ポート	Type A (USB メモリ用)							
出力端子	赤:正出力、黒:負出力、緑:アースグランド							
<u>м, тыл, ж, жыл, м, удду</u>								

デジタル制御、測定 (RS-232/485, USB, LAN, C	GPIB)	単位	100L50	100M250						
出力電圧設定確度	0.1% of setting+	mV	40	200						
出力電流設定確度	0.2% of setting+	mA	20	2						
出力電圧設定分解能		mV	2	10						
出力電流設定分解能		mA	1	0.1						
出力電圧測定確度	0.1% of reading+	mV	40	200						
出力電流測定確度	0.2% of reading+	mA	20	2						
出力電圧測定分解能	mV	2	10							
出力電流測定分解能	mA	1	0.1							
AC 入力	単位	100L	100M							
入力電圧範囲	Vac	85 ~ 265								
入力周波数範囲		Hz	47 ~ 63							
最大入力電流	100Vac	А	1.5	1.44						
取入入刀电加	200Vac	Α	0.75	0.72						
突入電流			< 20Apeak							
最大入力電力		VA	150							
力率	100Vac		0.98							
<u> </u>	200Vac		0.95							
効率	100Vac	%	70	72						
刈 牵	200Vac	%	72	74						
出力保持時間			> 20ms (定村	各負荷時)						
インターフェイス										
USB	Type A: ホスト、Type B: スレーブ、スピード: 1.1 準拠 , USB クラス: CDC (通信デバイスクラス)									
RS-232C/RS-485	RS-232C/RS-485 仕様に準拠 (コネクタを除く)									
LAN (G タイプのみ)		<u> </u>								
GP-IB (G タイプのみ)	SCPI-1993, IEE 専用コネクタ GT			ヘクタに変換						
動作環境										
動作温度	$0^{\circ}\text{C} \sim 40^{\circ}\text{C}$									
保存温度	-20°C ~ 70°C									
動作湿度	20% ~ 80% R	% ~ 80% RH; 結露がないこと								
保存湿度	20% ~ 85% R	20% ~ 85% RH; 結露がないこと								
高度	最高 2000m									
General Specifications		単位	100L	100M						
質量	本体のみ		約 2.5kg							
外形寸法	(W × H × D) mm 71 × 124 × 301									
冷却方式	自然空冷	自然空冷								
EMC	計測製品クラス A テストについて、欧州 EMC 指令 2014/30/EU に 準拠									
安全性	欧州低電圧指令 201	4/35/EU に準拠								
耐電圧	電源入力 - 筐体間 AC 1500V、1 分間電源入力 - 出力間 AC 3000V、1 分間筐体 - 出力間 DC 500V、1 分間									
絶縁抵抗	電源入力 - 筐体間 100M Ω以上 (DC 500V) 電源入力 - 出力間 100M Ω以上 (DC 500V) 筐体 - 出力間 100M Ω以上 (DC 500V)									
備考:										

- *1: 電源入力 85V ~ 132V 間または 170V ~ 265V 間での変動に対して *2: 無負荷から定格時、AC 一定、リモートセンシグ使用にて *3: JEITA RC-9131B (1:1) プローブ使用

- *4: 測定帯域幅 10Hz ~ 20MHz *5: 測定帯域幅 5Hz ~ 1MHz

- *6: 抵抗負荷時、定格の 10% ~ 90% の時間 *7: 抵抗負荷時、定格の 90% ~ 10% の時間 *8: 定電圧動作にて、負荷を定格の 50% から 100% に変化させたときに、 出力電圧が± (0.1% of rating + 10mV) 内に復帰する時間
- *9: AC 入力一定、定格電圧分の変動による負荷変動

- ●正しく安全にお使いいただくため、ご使用の前に必ず「取扱説明書」と「安全上のご注意」をよくお読みください。
- ●「水、湿気、湯気、ほこり、油煙」等の多い場所に設置しないでください。「火災、感電、故障」などの原因となることがあります。
- ●定格、意匠は改善のため予告なく変更することがあります。●このカタログに掲載した製品写真は撮影上および印刷上の条件により、実際の色と異なる場合があります。
- 計事情により価格変更または生産中止となる場合があります。
 ●弊社製品の取り扱いには、十分な知識が必要となります。一般家庭・消費者向けの製品ではありません。

あなたの「はかりたい」をサポート

株式会社テクシオ・テクノロジー **TEXIO TECHNOLOGY CORPORATION**

詳しくは https://www.texio.co.jp/ Here's Texio!

●本 社

〒222-0033 横浜市港北区新横浜 2-18-13 藤和不動産新横浜ビル 7F

●お問い合わせは各営業所へどうぞ。

北日本営業所 〒330-0801 さいたま市大宮区土手町1-2 TEL.048-780-2757 FAX.048-780-2758 〒222-0033 横浜市港北区新横浜 2-18-13 TEL.045-620-2305 FAX.045-534-7181 東日本営業所 〒464-0075 名古屋市千種区内山 3-31-20 TEL.052-753-5853 FAX.052-753-5855 中日本営業所 〒567-0032 大阪府茨木市西駅前町 14-19 TEL.072-631-8055 FAX.072-631-8056 西日本営業所

●アフターサービスに関しては下記サービスセンターへ

サービスセンター 〒222-0033 横浜市港北区新横浜 2-18-13 TEL.045-620-2786 FAX.045-534-7183

●お問い合わせは信用ある当店へ