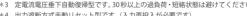
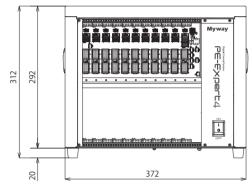
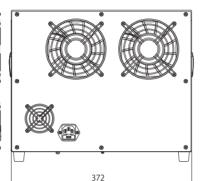
専用ラック仕様


項目		仕様
スロット数		12スロット *1
八,	ス仕様	MWPE4バス *2
	入力電圧	AC100~240V 50Hz/60Hz
	入力電源	4A/2A
電源 仕様	バス供給電圧	+12V
	最大供給電流	25A
	過電流保護	28.4A ~ *3
	過電圧保護	15.0~17.4VDC *4
	温度	0~50°C
環境	湿度	90%以下(結露しないこと)
	使用条件	屋内
外;	形寸法	372mm(W)×312mm(H)×260mm(D)


- *1 PE-Expert4システムを構成するボードは、その種類により、1スロットまたは2スロットを占有します。
- *2 MWPE4バスは、ラックのバックプレーンを利用した当社独自仕様です。
- *3 定電流電圧垂下自動復帰型です。30秒以上の過負荷・短絡状態は避けてください。
- *4 出力遮断方式手動リセット型です。(入力再投入が必要です)

PE-ViewX、PEOS、PE-Meter動作環境


項	∄	仕様
CPU	必須条件	コア数2以上 動作周波数2.0GHz以上 Intel Core i3 第5世代相当以上 例:i3-5005U
CPU	推奨条件	コア数2以上 動作周波数2.2GHz以上 Intel Core i5 第5世代相当以上 例:i5-5200U
メモリ容量	必須条件	4GB以上
グモリ谷里	推奨条件	8GB以上
インターフェース		Gigabit Ethernetポート1ch USBポート1ch
OS		Windows [*] 7 (64bit / 32bit)日/英 Windows [*] 10 (64bit)日/英
解像度		1366×768以上

Windows は米国 Microsoft Corporation の米国およびその他の国における登録商標です。

エキスパートな研究・開発・実験環境に最適な PE-Expert4 関連製品

SiC デバイス搭載インバータユニット PE-Inverter

10kVA, 20.7kVA, 50kVA

回生型直流電源 **PCUBE**

80V版:10kW 500V版:11.5kW

TM003-002-685E

介 安全に関するご注意

正しく安全にお使いいただくため、で使用の前に必ず「取扱説明書」をお読みください。

取扱店

水、湿気、湯気、ほこり、油煙などの多い場所に設置しないでください。火災、感電、故障などにより、死亡や大けがをすることがあります。

●記載されている会社名および製品名は、当社や各社の商標または登録商標です。●使用されている製品の画面は、はめ込み合成です。●このカタログに記載されている内容の一部または全部を無断転載する事は禁止されています。 ●このカタログに記載の製品は日本国内仕様です。海外仕様については別途ご相談ください。

Myway プラスウェブサイト

www.myway.co.jp

本カタログは環境に配慮した再生紙を使用しています。

製品に関するお問い合わせおよび資料のご請求

ご相談窓口(営業):045-548-8836

●FAX受付:045-548-8832

●メール受付:sales@myway.co.jp

●受付時間:月~金9:00~18:00(土曜・日曜・祝日・弊社休業日除く)

- ●このカタログに掲載の仕様および外観は改善のため予告なく変更することがあります。

Mywayプラス株式会社 Copyright© Myway Plus Corporation

〒220-0022 神奈川県横浜市西区花咲町 6-145 横浜花咲ビル

このカタログの記載内容は2020年1月現在のものです。

PE-Expert4

最先端IT技術により、進化するパワエレ専用プラットフォーム。

パワエレを熟知したエンジニアが設計した拡張性の高いコントローラおよび開発環境です。 目指したのは、パワエレ開発に求められる3大要素「高い安全性」「制御量の波形表示」「簡単操作」。 これまでとこれからを見据えた進化する最先端のパワエレ開発システムが誕生しました。

www.myway.co.jp

パワーエレクトロニクスの開発環境に求められる3大要素。

パワーエレクトロニクス(以下、パワエレ)の分野は、マイコン制御や電気回路・機械・系統連系の技術など、多岐にわたる知識が必要となります。さらに近年では、モータやインバータなどの単一のパーツでは性能向上が難しく、システムの全体最適が必要となっています。そのため、性能改善のため、専門分野を超えて開発することも少なくありません。これは制御開発についても例外ではないため、専門分野でなくても簡単に使える開発環境が求められます。

電力変換器の開発では、常に高速スイッチングするノイズ環境の中、高電圧・大電流を扱うため、コントローラの誤動作が起きやすく、パワエレならではの独自の悩みが常に付きまといます。高速スイッチングしている制御対象は、急に止めることができないため、JTAGツールでのデバックでは不便を感じたり、場合によっては誤動作の原因になる恐れもあります。そのため、安全かつリアルタイムにデバックするツールが求められます。

多くの制御対象は、モータや系統に接続されるため、オシロスコープなど多種の計測器を用いて波形表示させ、制御パラメータの最適化をはかりますが、その際に制御量と計測器の測定データ間で同期をとることや、計測器では測定しずらい箇所の計測をどうやって行うかなど、さまざまな障壁があります。そのため、制御量のパラメータ最適化をいかに短期間で導き出すかが、開発効率化の1つのポイントとなります。

そこで、20年にわたりパワエレに関わる大学の研究室や、企業の研究・開発部門へデジタル制御システムを納品してきた当社は、その技術とノウハウを集結させ、パワエレ開発に求められる3大要素すべてに対応し、将来起こり得る課題を予測した、最先端のパワエレ用制御システムPE-Expert4を開発しました。

パワエレ開発環境に求められる3大要素

PE-Expert4の特徴 ~目指したのは、パワエレに特化した統合開発環境~

● 将来を見据えた1.25GHzのデュアルコアDSPを搭載し、ベクトル制御5μs以下を実現

- オプションボードの追加で、容易にI/O・機能拡張可能
- 光ケーブルインターフェースを採用し、絶縁およびパワエレ特有のノイズを対策
- 専用バス設計により、オプションボード間の同期制御が可能

ソフトウェア

ハードウェア

- パワエレ専用ライブラリ PEOS 搭載し、パワエレ初心者にも優しい C言語開発
- WDTによる制御暴走時のゲートブロックなど、安全性を考慮した設計
- 専用カーネルが制御とデバッグを分離し、デバッグの影響を受けません
- 制御ソフトウエアの変数をリアルタイムに観測・制御可能
- オシロスコープのように内部変数を波形表示、リアルタイムデバックを実現

PE-Expert4

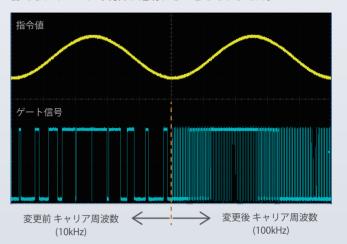
PE-ViewX PEOS PE-Meter

制御プログラムから独立した演算機能。

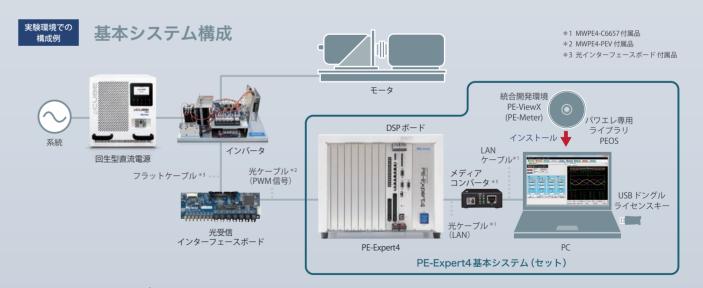
| キャリア周波数 200kHz のベクトル制御

高性能なDSPの採用に加え、通信にかかる時間や遅れを短縮し、処理速度を飛躍的に向上しました。一般的なベクトル制御の処理は、PWM指令出力を含めても5μs以下で行うことが可能です。

当社モータコントロール SW 使用時の処理速度比較 (2014.8.22)


| PE-Expert4が高速制御を実現できる理由

PE-Expert4は、1.25GHzの高性能DSPなど下記の点を考慮し、システム全体の最適化をはかり、高速コントローラを実現しています。例えば、高速に大量のデータを送るよりも、小さなデータを数多く送れた方がパワエレには向いているため、オプションボードを繋ぐバスの通信方式も独自開発しています。


Ⅰ 制御を止めないキャリア周波数の変更

制御プログラムを実行中に、キャリア周波数を変更できます。切り 替えるタイミングで制御が途切れることもありません。

| ボード間同期で複数のインバータを同期制御

専用ラック内に挿入された異なる複数のオプションボードの動作を 同期できるため、複数のインバータを同期制御できます。複数の PEV ボードのキャリアを同期させ、MMC(Modular Multilevel Converter)としてご活用いただけます。

- 10スロット分を各種オプションボードで拡張可能、様々な開発用途に対応
- 設計、制御、測定、デバッグなど、PC上のGUIで一括操作
- PCとの接続は、光ケーブルを採用し絶縁。万が一、大電力が入ってきても、PCへの影響が最小限になるシステム構成を実現

PE-Expert4のプログラム開発は、統合開発環境 PE-View X で行ないます。

「安全にパワエレ機器向け制御プログラム開発ができること」を目 的とした統合開発環境 PE-View X には、プロジェクトの管理、プログ ラムの開発、各種デバッグ機能など、プログラム開発に必要な機能 を一元的に提供します。プロジェクトを構成するソースファイルに

合わせて、コンパイル用のバッチファイルを自動生成し、パワエレ 開発に特化した専用ライブラリと自動でリンク。これにより、ソー スファイルの編集、コンパイル、プログラムのダウンロード、実行 および効率的なデバッグまで、一連の作業を簡単操作できます。

a Compile 開発したプログラムのコンパイル

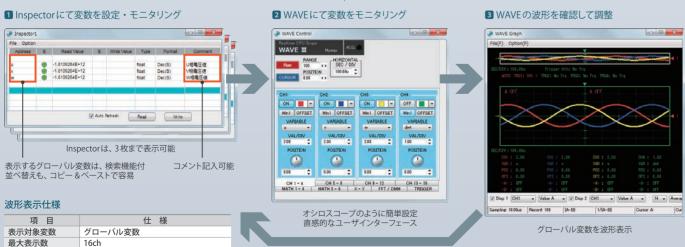
サンプリング

b DownLoad C Execute、Stop C プログラムの実行、停止

WAVE

d Verify プログラムダウンロードのチェック Data Rec

ブローバル変数の長時間のロギング PE-Meter


PE-Meterの起動 (要METERボード)

PE-ViewX

10μS: 16ch、5μS: 8ch

リアルタイムデバッグを実現し、波形表示も簡単。

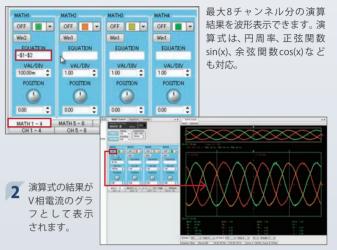
JTAGを使用してのデバックでは、変数の変更時にDSPを一時停止 しますが、本システムは専用のシステム設計により、DSP制御にか かる負担を限りなく小さくし、システム停止のないリアルタイムな 変数変更を実現しました。また、オシロスコープのように内部変数 を簡単操作で波形表示することができるので、変数の変更による波 形の確認、調整などが簡単に行えます。

X-Yグラフ、MATH機能、FFT解析など、様々なデバッグを簡単操作で。

FFT解析

1 FFT タブを選択した状態で、FFT ボタンを押し、チャネルを選択。

グラフ(リサー


ジュ図形)が表

示されます。

MATH機能

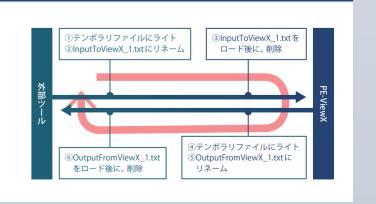
MATH1-4タブを選択した状態 EQUATION に演算式を入力。

Data Rec

1 サンプリング周期を設定し、Runボタンでサンプリング開始。

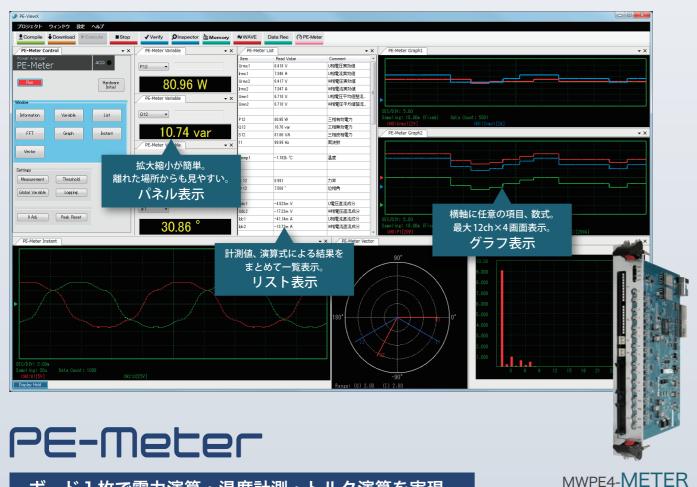
サンプリング周期は、10ms~10s。最大 32チャネルの変数をサンプリングし、 サンプリングデータは、ファイルに自 動保存されます。

2 設定はLog Settings で行ないます。



外部ツール連成機能 ~ 制御と計測の融合による試験の自動化~

PE-ViewXにコマンドを記述した「テキストファイル」を読み込 む機能が追加されました。


これにより、<設定→計測→設定変更→…>といった繰り返し 作業を、自動化することが可能になります。

また、Read 結果を後処理 (解析) で使用できるように、ファイル 保存する機能が追加されました。上位のアプリケーションと連 携し、パラメータの最適化などにご活用いただけます。

オールインワンの計測機能「PE-Meter」が、実験結果の傾向を示します。

*METERボードが必要です。

ボード1枚で電力演算・温度計測・トルク演算を実現。

パワエレとITの融合は、PE-Expert4やPE-ViewXをさらに進化させ ました。その名も PE-Meter機能。新たに開発された METER ボードと、 PE-ViewX (※Ver3.0以上) により、電力演算や温度計測、トルク演算 を制御と共に実現します。PC ウィンドウならではの位置やサイズの

自由なカスタマイズはもちろんのこと、"PE-Meter List ウィンドウ" および "PE-Meter Graph ウィンドウ" では、計測値以外に、"P1 - P2" など計測値による演算式にも対応。従来の電力計では難しい、演算 結果を簡単に表示することが可能です。

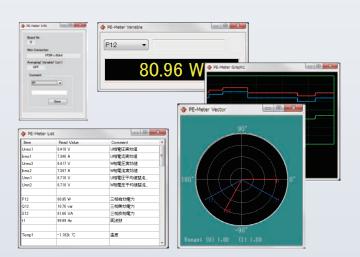
主な特徴

- 電圧/電流に対応したアナログ信号だけでなく、有効電力など電力関連の物理量を演算・表示
- トルク計出力、エンコーダ出力を取り込み、機械系の物理量を演算・表示
- 熱電対による温度計測を使えば、制御のトリガーとして活用可能
- 自由度が高く独自カスタマイズ可能なGUI

│ 追加スペース「ゼロ」で計測を実現

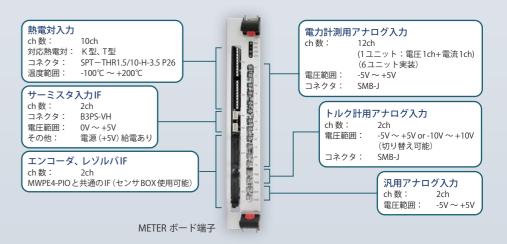
スロットに収まるMETERボードで、計測機能を実現します。 そのた め、従来別に置き場所が必要となる計測器の代わりに、追加スペー ス「ゼロ」で、計測環境を実現でき、作業エリアを有効に使えます。

| 計測データの一括管理

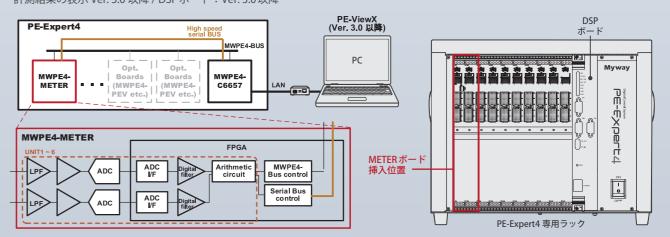

計測器が複数に分かれていると、必ずデータを変換・集計する必要 があります。PE-Meterでは、同じ時間軸でデータを計測し、表示す るため、最後にデータを繋ぎ合わせる手間を削減します。

コントロール処理に影響をあたえない様々な電力演算表示。

| 各種表示ウィンドウ

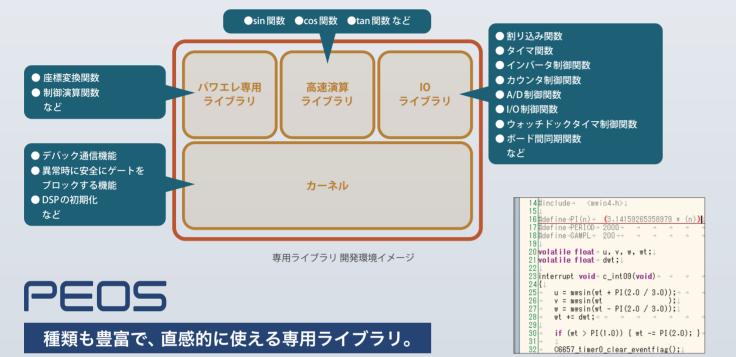

ウィンドウ	機能
PE-Meter Info	ユーザーが設定した各種計測条件を表示します。
PE-Meter Variable	各計測項目の計測値を表示します。
PE-Meter List	各計測項目及びモニタ用に登録されたグローバル変数の 計測値の一覧を表示します。
PE-Meter FFT	選択されたユニットの計測値をFFT表示します。
PE-Meter Graph	各計測項目及びモニタ用に登録されたグローバル変数の 計測値をグラフ表示します。
PE-Meter Instant	選択された計測項目の瞬時値をグラフ表示します。
PE-Meter Vector	電圧、電流の位相関係をベクトル表示します。

制御プログラム中のグローバル変数を表示することが可能です。グ ラフ上に計測結果と(グローバル変数として定義された)制御変数 を合わせて表示することにより、制御変数と計測結果の相関を直感 的に把握することが可能です。


| 熱電対による温度測定も可能

K型およびT型熱電対に対応した入力イ ンターフェースが実装されています。 計測された温度データは、GUI上で表示 可能な他、専用関数により制御プログ ラム内で使用することが可能です。こ れにより、「特定の温度に達した場合に、 制御を停止する」などの処理が可能にな ります。

PE-Meterシステム構成


PE-Meter機能は、以下の構成により実現します。METERボード(MWPE4-METER): AD変換および演算処理 / PE-ViewX: 各種設定および 計測結果の表示 Ver. 3.0 以降 / DSP ボード: Ver. 3.0 以降

ノウハウを凝縮した専用関数ライブラリ PEOSが、開発期間を短縮します。

「パワエレ」に特化し、モータ制御や電源制御で頻繁に使用される機能をライブラリ関数化しました。150種類以上の関数を簡単に使用できるため、研究・開発に要する時間が大幅に短縮され、DSP/マイコンを意識せずに、馴染みのあるC言語でのプログラミング開発が行えます。ライブラリ関数はパワエレ制御専用に最適化されており、

独自演算アルゴリズムの採用による高速な演算処理を実現しています。一般的にDSPを使いこなすには、数百ページものマニュアルを読まなければなりませんが、ライブラリ関数を使用すればその必要はありません。ライブラリ関数を呼び出すだけで、効率の良いプログラムを作成することができます。

ライブラリ関数は、一般的に以下のような命令規則が適用されています。

<ボード名称>」<機能名称><連番>」<動作種別>」<操作対象>

例: MWPE4-PEV ボード、ボード番号 0 のインバータ出力の PWM 出力を開始する。 **PEV_inverter_start_pwm(0)**

■三相PWM発生器への三角波変調指令値の出力

- PEV_inverter_set_uvw(INT32 bdn, FLOAT32 u, FLOAT32 v, FLOAT32 w, FLOAT32 fs)
- u, v, w:変調率
- fs: キャリア周波数(スイッチング周波数) モータを動かしながらキャリア周波数を変更できるので、最適な キャリア周波数を観測するのに便利。

■AD変換モードの設定

- PEV_ad_set_mode(INT32 bdn, INT32 mode)
- mode: AD変換モードの設定 簡単な設定により多彩な AD変換を使用できる。 (連続変換、キャリア同期変換、シングルショット、外部トリガー)

■AD変換結果及びエンコーダのカウント値取得

- PEV_ad_abz_read(INT32 bdn, FLOAT32 data[8], INT32 *abz)
- data:8ch分のAD変換結果格納ポインタ
- *abz: ABZカウンタ値格納ポインタ8ch分のAD値とABZカウンタを同時に読み込める。

■CAN通信機能の初期化

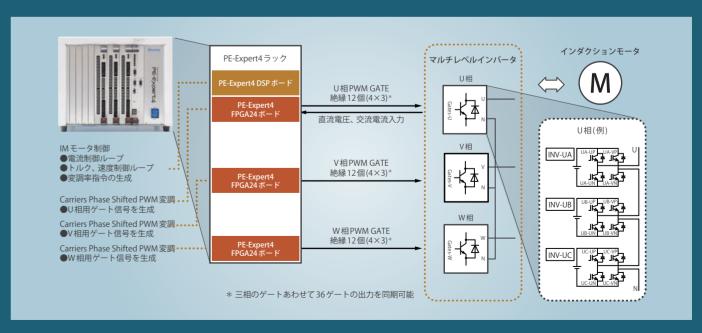
- C6657 can init(UINT32 ch, UINT32 bps)
- bps:通信速度を指定(125kbps 1Mbps) 簡単な設定でCAN通信が可能。

その他、ボード間同期、多彩な割り込み機能、3相/2相座標変換関数、個別ゲートコントロール、dq変換等を提供しています。

実際に使用されている PE-Expert4の構成例

SiCデバイス搭載インバータ+回生型直流電源+モータ

SiCデバイスを用いた実験環境の構成例です。当社SiCデバイス搭載インバータ、大容量電源に回生型直流電源「pCUBE」を使用し、専用インターフェースで簡単に接続。パワーエレクトロニクスの最先端


技術に取り組んできた当社の研究開発用製品群を効率的に活用する ことで、ハードウェア保護機能、絶縁対策を実装した安全性の高い 実験環境をスピーディーに構築し、他社との差別化に注力できます。

マルチレベルインバータ+インダクションモータ

9レベルのマルチレベルインバータでインダクションモータを制御する構成例です。ユーザがFPGAのロジックをプログラムすると、Carriers Phase Shifted PWM変調の三相同期したゲート信号を生成することができます。

DSPボードでFPGAボードにあるロジック制御を行います。DSPボードのプログラム構成により、モータの電流のベクトル制御、トルクおよび速度制御、Carriers Phase Shifted PWM変調などを行うことができます。

各種オプションボードにより、様々な開発用途に対応。

独自のバス通信方式に対応した各種オプションボードにより、外部インターフェース (入出力機能) を拡張できます。 PE-Expert4専用ラックには、DSPボードを除く、残り10スロットを自由に拡張することができます。

	オプションボード名称	使用	増設可能				外部イ	′ンターフ	ェース			
	型番	スロット数	枚数*1	通	信	PWM/ 光出力	AD	DA	デジタル入力	デジタル出力	その	の他
基本	DSPボード MWPE4-C6657	2	- *2	CAN 1ch	RS232C 2ch							
	PEVボード MWPE4-PEV	2	5			光出力 6ch	8ch		16ch	16ch	エンコーダ ABZ 入力 1ch	UP/DOWN カウンタ入力 2ch
ゲート	光6出力FPGA6ボード MWPE4-FPGA6	1	5 *³			光出力 6ch	8ch		4ch	4ch		
ト信号出力あり	光24出力FPGA24ボード MWPE4-FPGA24	2	5 *³			光出力 24ch	8ch		4ch	4ch		
刀あり	IP対応FPGA6ボード MWPE4-IPFPGA6	1	5*4			光出力 6ch	8ch		4ch	4ch		
	IP対応FPGA24ボード MWPE4-IPFPGA24	2	5*4			光出力 24ch	8ch		4ch	4ch		
ゲ	METERボード MWPE4-METER	2	5				16ch*5				エンコーダ ABZ レゾルバ 2ch	熱電対入力 10ch サーミスタ入力 2ch
ー ト 信	DAボード MWPE4-DAC	1	5					12ch				
-ト信号出力なし	ADボード MWPE4-ADC	1	5				12ch					
L	PIOボード MWPE4-PIO	1	5						16ch	16ch	UP/DOWN カウンタ入力 2ch	エンコーダ ABZ 入力 2ch

- *1 増設可能枚数とは専用ラックに実装可能な同一オプションボード数です。
- *2 DSPボードの実装は、必須となります。DSPボードは、専用ラックに1枚だけ実装可能です。
- *3 光6出力FPGA6ボードと光24出力FPGA24ボードの実装は、合わせて5枚まで実装可能です。
- *4 IP対応FPGA6ボードとIP対応FPGA24ボードの実装は、合わせて5枚まで実装可能です。
- *5 4chは、トルク計用アナログ入力、汎用アナログ入力に使用。

DSPボードは、PE-Expert4システムの中核となるボードで、高速浮動小数点型 DSP を搭載し、演算処理、電気的な絶縁による パソコンとの通信、他の拡張ボードのI/O制御などを行います。専用ラックの所定位置への実装が必須となります。

DSP ボード

MWPE4-C6657

付属品:LAN クロスケーブル、光メディアコンバータ、光ケーブル

項目		仕 様		
使用スロット数		2スロット		
DSP		TMS320C6657 (1.25GHz)		
内蔵RAM		1024KB (中速) 32KB (高速) 共に一部占有済み		
外付けRAM		512MB 一部占有済み		
EEPROM		128KB		
通信方式		光Ethernet		
絶縁RS232Cポート		2組Dsub-9pin		
	通信方式	CAN2.0B		
	チャンネル数	1ch		
	通信速度	125kbps~1Mbps		
CAN通信ポート	メールボックス数	15 (内1つは、受信専用)		
CAN MEEN-P	電気的絶縁	2500Vrms (ADM3053相当)		
	CANコントローラ	CC770		
	CANドライバ	ADM3053		
	コネクタ	1組 Dsub-9pin		

●他のオプションボードを増設してご使用いただく際にも、本ボードの実装が必須となります。

高キャリア周波数 (500kHz) でPWM生成が可能なボードです。

パルス遅延が最小になるように設計しており、SiCデバイス搭載インバータの性能を最大限発揮することができます。

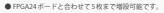
PEVボード

MWPE4-PEV Gate Signal

付属品:ケーブル (7本)、両側 SMB 同軸ケーブル (8本)、フラットケーブル 26pin、フラットケーブル 40pin、 26pin用変換基板、40pin用変換基板

項	目		仕 様		
使用スロット数			2スロット		
三相PWM			1組		
変調方式			電圧型三角波変調、電圧型空間ベクトル変調、直接ゲートコントロール機能		
デッドタイム			0 ~ 20 μs		
キャリア周波数			1kHz ~ 500kHz		
PWM精度			14bit キャリア周波数10kHz時		
ADC			14bit 8ch同時サンプリング		
デジタル入力			16ch 内6chはインプットキャプチャと兼用		
デジタル出力			16ch		
インプットキャプチャ			32bit 4入力 Digital inを使用		
UP/DOWN カウンタ			32bit 1組(2入力) Digital inを使用		
ABZエンコーダ入力			1組 (A,B,Zの3入力) / 差動入力OC / カウンタ長32bit		
	R/D変換IC		AU6803相当		
レゾルバ入力*1	通信方式		差動シリアル		
	信号レベル	入力	差動 AM26LS31C相当に対応		
		出力	差動 AM26LS32A 相当に対応		

*1 レゾルバ入力は、当社アクセサリのセンサ信号絶縁変換BOX (別売) が必要です。


FPGAを搭載し、ゲート信号出力を三相分(6ch)備えたボードです。 VHDL、Verilog HDLでのロジック開発や、任意波形でのゲート信号生成などにおすすめです。

光6出力FPGA6ボード

MWPE4-FPGA6 Gate Signal

付属品:SMB変換用拡張ボード、TTL-差動変換ボード、光ケーブル (6本)、両側SMB同軸ケーブル (8本)、 フラットケーブル 26pin、フラットケーブル 16pin

	項 目	仕 様	備考
使用スロット数		1スロット	
ユーザ用FPGA		XC6SLX45-2FGG676C	Xilinx社製
ユーザ用PROM		XCF16PVOG48C	Xilinx社製
	チャンネル数	8ch	
AD変換	分解能	14bit	
AD支换	入力電圧範囲	±5V	
	同時サンプリング	8ch	FPGA ロジックに依存
デジタル入力		4ch	RS-422互換
デジタル出力		4ch	RS-422互換
光出力		6ch	

FPGAを搭載し、ゲート信号出力を24chに拡張したボードです。

ゲート信号を最大120本(5枚増設時)まで拡張できるので、超並列リアルタイム処理による多ゲート制御が可能です。 三相以上の出力や、複数のインバータを1つのコントローラで制御するのにおすすめです。

光24出力FPGA24ボード

MWPE4-FPGA24 Gate Signal

付属品:SMB変換用拡張ボード、TTL-差動変換ボード、光ケーブル (24本)、両側 SMB 同軸ケーブル (8本)、 フラットケーブル 26pin、フラットケーブル 16pin

項 目		仕 様	備考
使用スロット数		2スロット	
ユーザ用FPGA		XC6SLX45-2FGG676C	Xilinx社製
ユーザ用PROM		XCF16PVOG48C	Xilinx社製
	チャンネル数	8ch	
AD変換	分解能	14bit	
AD友揆	入力電圧範囲	±5V	
	同時サンプリング	8ch	FPGA ロジックに依存
デジタル入力		4ch	RS-422互換
デジタル出力		4ch	RS-422互換
光出力		24ch	

● FPGA24ボードと合わせて5枚まで増設可能です。

FPGAを搭載し、ゲート信号出力を三相分(6ch/24ch)備えたボードです。

従来のFPGAボードと比較し、最新のFPGA (Xilinx社製 Kintex-7° スピードグレード 1) を搭載。当社が独自に提供する IP(Intellectual Property)を組み合わせることで、FPGAのロジック開発を簡素化します。

IP対応 FPGA6 ボード

MWPE4-IPFPGA6

付属品:SMB変換用拡張ボード、TTL-差動変換ボード、光ケーブル (6本)、両側SMB同軸ケーブル (8本)、 フラットケーブル 26pin、フラットケーブル 16pin

	項目	仕 様	備考
使用スロット数		1スロット	
ユーザ用FPGA		XC7K70T-1FBG676C	Xilinx社製
ユーザ用PROM		N25Q128A13ESF40E	Micron社製
	チャンネル数	8ch	
AD変換	分解能	14bit	
	入力電圧範囲	±5V	
	変換時間	500ns	FPGA ロジックに依存
デジタル入力		4ch	RS-422互換
デジタル出力		4ch	RS-422互換
光出力		6ch	
JTAGコネクタ		フロントパネルからアクセス	

■対応予定IPリスト DSPボード間通信

- ボード間同期 (ゲート生成)
- 制御信号生成
- PWM制御 (三角波比較/鋸波)
- PWM 前脚 (二月成比較/) 空間ベクトル変調 マ間ベクトル変調 マルチレベル PWM 制御 ヒステリシス制御 SR モータ制御 矩形波位相制御
- 120°制御 • ワンパルス制御
- 信号入力
- AD変換 レゾルバ信号変換
- エンコーダ信号入力 (角度推定)

IP対応FPGA24ボード

MWPE4-IPFPGA24 Gate Signal

付属品:SMB変換用拡張ボード、TTL-差動変換ボード、光ケーブル (24本)、両側SMB 同軸ケーブル (8本)、 フラットケーブル 26pin、フラットケーブル 16pin

	項目	仕 様	備考	
使用スロット数		2スロット		
ユーザ用FPGA		XC7K70T-1FBG676C	Xilinx社製	
ユーザ用PROM		N25Q128A13ESF40E Micron社製		
	チャンネル数	8ch		
AD変換	分解能	14bit		
AD支換	入力電圧範囲	±5V		
	変換時間	500ns	FPGA ロジックに依存	
デジタル入力		4ch	RS-422互換	
デジタル出力		4ch	RS-422互換	
光出力		24ch		
JTAGコネクタ		フロントパネルからアクセス		

- ●FPGA開発ツールは、Xilinx社より無償配布されているVIVADO® WebPACKをご利用ください。 弊社では、本ボードのFPGAロジック開発にVIVADO® WebPACK 2016.4以降を推奨しています。
- ●FPGAの書き込みには専用のダウンロードケーブル (Xilinx社へお問合せください) が必要です。 IP対応FPGA6とIP対応FPGA24ボードは、合わせて5枚まで増設可能です。

AD変換機能/高速電力演算機能/熱電対による温度計測機

高速転送するための高速シリアルバス機能

METERボードは、PE-ViewXの電力計測機能(PE-Meter)を使用するための専用ボードです。 制御に影響を与えずに、電力等のパラメータを高速で演算することができます。

METER ボード

MWPE4-METER No Gate Signal

付属品:両側SMB同軸ケーブル(16本)、BNC⇒SMB変換コネクタ(16個)、フラットケーブル(40pin-20pin-x2(2本)、20ピン用変換基板(4枚)

項	[]	仕 様	
使用スロット数		2スロット (正面からラックを見て、左端に固定)	
	電力計測	12ch (電圧、電流) ×6 セット	
入力ch数	トルクセンサIF	2ch	
	汎用AD入力	2ch	
	電力計測	±5V	
入力電圧範囲	トルクセンサIF	±5Vまたは±10V(基板上のジャンパで切り替え)	
	汎用AD入力	±5V	
周波数帯域		500kHz	
LPF (デジタル)		500Hz, 1kHz, 5kHz, 10kHz, off	
ADCサンプリングレート		3MHz	
ADC分解能		14bit	
司時変換		全ch同時AD変換	
温度計測	対応熱電対	K型、T型	
血反 司 冽	温度範囲	-100°C ~ 200°C	
	ch数	2ch	
ABZエンコーダ入力	カウンタ長	32bit	
MDCエンコーダ人刀	信号レベル	差動 (RS422互換) オープンコレクタ	
	Z interrupt	yes	
	R/D IC	AU6803 compatible	
レゾルバインターフェース	Interface	Serial (RS422) x2ch	
	interrace	AM26LS31C(in)/AM26LS32C(out) compatible	

アナログ信号出力を拡張するボードです。

アナログ信号出力を追加する場合や、信号を分けたい場合に使用できます。

DAボード

MWPE4-DAC No Gate Signal

付属品:両側SMB同軸ケーブル(12本)

項 目	仕 様
使用スロット数	1スロット
出力チャンネル数 (SMBコネクタ)	12ch
電圧出力範囲	±10V
アナログ出力分解能	16bit

アナログ入力を拡張するボードです。

1枚で12ch分のチャンネルを拡張することができます。

AD ボード

MWPE4-ADC No Gate Signal

付属品:両側SMB同軸ケーブル (12本)、VHコネクタケーブル

項目	仕 様
使用スロット数	1スロット
入力チャンネル数 (SMBコネクタ)	12ch
入力電圧範囲	±5V
アナログ入力分解能	14bit

デジタル入出力、カウンタ機能の拡張を目的としたボードです。 1枚でデジタル入力、出力ともに16ch、カウンタ機能を2ch拡張することができます。

PIO ボード

MWPE4-PIO No Gate Signal

付属品:フラットケーブル 40pin-20pin (2本)、フラットケーブル 40pin、20 ピン用変換基板 (2枚)、40pin 用変換基板

項 目			仕 様
使用スロット数			1スロット
デジタル入出力	入力信号数		16ch(うち6chは高速)
	信号入力レベ	ル	+12V~24V (高速:+5V)
	割り込み		1点
	出力信号数		16ch
UP/DOWN カウンタ	チャンネル数		2ch
	カウンタ精度		32bit
	カウント方式		UP/DOWN or Plus/DIR
ABZカウンタ入力	チャンネル数		2ch
	カウンタ精度		32bit
	信号レベル		差動 or OC
	Z割り込み		あり
レゾルバ入力*1	R/D変換IC		AU6803相当
	通信方式		差動シリアル
	信号レベル	入力	差動 AM26LS31C相当に対応
	ログレベル	出力	差動 AM26LS32A 相当に対応

*1 レゾルバ入力は、当社アクセサリのセンサ信号絶縁変換BOX (別売) が必要です。

ラック

PE-Expert4専用ラック

MWPE4-RACK12

付属品:電源ケーブル、ブランクパネル(10枚)

●DSPボードやオプションボードを収納。

項 目	仕 様
スロット数	12スロット
入力電圧	AC100~240V 50Hz/60Hz
入力電流	4A/2A
外形寸法	372mm(W)×312mm(H)×260(D)mm

インターフェースボード

光受信インターフェースボード

MWPE-IFRX4-PRO

付属品: フラットケーブル (34pin-34pin)

●光信号を電気信号へ変換。光信号で入力されたPWMゲート信号に、デッドタイムを付加して電気信号として出力します。

項目		仕 様
光入力		6×1ch + ブレーキ信号 1ch
アナログ出力		8ch
デジタル入力		2ch
デジタル出力		3ch
デッドタイム	設定範囲	20n~10.22µs
	分解能	20ns

*デッドタイムはディップスイッチで設定。デッドタイム付加機能は有効/無効の切り替えが可能です。

モジュール

光受信モジュール (7個) MWACS-AFBR-2624Z

●光信号の受信に必要な基板実装用の コネクタ。7個セット。

光送信モジュール (7個) MWACS-AFBR-1624Z

●光信号の送信に必要な基板実装用の コネクタ。7個セット。

コネクタ

SMB同軸コネクタ (8個) MWACS-CON3150-BN

●A/D 入力・D/A 出力などの接続に必要な 基板実装用のコネクタ。8個セット。

BNC⇒SMB変換コネクタ (8個) MWACS-BNC-SMB

● BNC を SMB に変換するコネクタ。 8個セット。

フラットケーブルコネクタ 34pin HIF3BA-34PA-2.54DSA(71)

●フラットケーブル34ピン用ストレート コネクタ。

フラットケーブルコネクタ 50pin HIF3BA-50PA-2.54DSA(71)

●フラットケーブル50ピン用ストレート

ケーブル

光ケーブル

MWACS-DLCPC2G/CSD2M<2m> MWACS-DLCPC2G/CSD5M<5m> MWACS-DLCPC2G/CSD10M<10m>

● PE-Expert4とメディアコンバータとの 接続用。

ケーブル長:2m/5m/10m

両側SMB同軸ケーブル(8本) MWACS-CON3200-BNX2<2m> MWACS-CON3200-BNX5<5m> MWACS-CON3200-BNX10<10m>

● A/D 入力・D/A 出力ボードの接続用。 ケーブル長:2m/5m/10m

光ファイバケーブル(7本) MWACS-APOF03-001-2M<2m> MWACS-APOF03-001-5M<5m> MWACS-APOF03-001-10M<10m>

●光コネクタの接続用。 ケーブル長:2m/5m/10m

フラットケーブル

MWACS-FLT3434-01<34pin-34pin> MWACS-FLT3450-01<34pin-50pin> MWACS-FLT5050-01<50pin-50pin>

●インバータユニット用。

<コントローラ>

型番	ピン数
MWPE-IFRX4-PRO	34ピン

<インバータ>

型番	ピン数
MWINV-1R022	34ピン
MWINV-5R022	34ピン
MWINV-9R122B	34ピン
MWINV-2022A	34ピン
MWINV-5022B	34ピン
MWINV-7R006A	50ピン
MWINV-9R144	34ピン
MWINV-34044	34ピン

オプションユニット

電圧センサーユニット MWPE-VS-01

付属品:両側SMB 同軸ケーブル (2本)

●電圧センサ2ch 搭載のユニット。 (SMB 出力) オフセット・ゲイン調整機能付。 入出力比: ±400V/±5V 応答特性:40μs

LCフィルタユニット MWPE-STK-LC2

●テスト用の三相LCフィルタユニット。 $C = 2.2[\mu F]$ L = 4[mH]

PIO/AD入出力キット MWPE-STK-IO2

●インバータ制御やモータ制御をサポート。 デジタル入力信号スイッチをインバータの起動・停止に利用したり、アナログ出力信号 をモータの回転速度の制御に利用可能。 個々のスイッチやボリュームの設定をプロ グラムによって変更できます。

- ■デジタル出力14点(スイッチ)■デジタル入力12点(LED)
- ■アナログ出力2点(ボリューム)

電流センサーユニット MWPE-IS-03

付属品:電流センサ接続用ハーネス(3本)、 コネクタ、コネクタ用操作レバー

●変換基板と電流センサ部を独立。 DC、AC、パルス等の電流を、一次回路と 測定用回路とで完全に絶縁。

OC-CARD (差動/OC変換基板) MWACS-OC-01

● 差動信号を OC (オープンコレクタ) に 変換する基板。

センサ信号絶縁変換 BOX MWACS-PSIF-01

●モータの位置センサ信号を変換。

<**対応センサ>** ■差動出力タイプABZエンコーダ■レゾルバ ■オーブンコレクタ出力タイプABZエンコーダ

<対応レゾルバ>

■メーカー: 多摩川精機 ■シリーズ: シングルシン/スマートシン* ■入力電源: AC4Vrms/AC7Vrms 10kHz

- ■変圧比: 0.200/0.230/0.286/0.500
- ■出力インピーダンス: 250~430Ω程度
- * TS2620N271E14は適応外です。