XSA800 Series Spectrum Analyzer Specifications

All technical specifications are guaranteed when the following conditions are met, unless otherwise stated:

- The instrument has been preheated for 30 minutes before use.
- The instrument is in the calibration cycle and has been self-calibrated.

"Typical" and "nominal" for this product are defined as follows

- Typical: Refers to the performance of the product under certain conditions.
- Nominal: Refers to the approximate value under product application process.

(SA810 (TG) (SA815 (TG)	9 kHz to 500.009 MHz 9 kHz to 1.000009 GH 9 kHz to 1.500009 GH	łz					
(SA815 (TG)							
	9 kHz to 1,500009 GH						
Hz	XSA815 (TG) 9 kHz to 1.500009 GHz						
	1 Hz						
0 Hz, 100 Hz to max frequency of instrument							
± span / (sweep points-1)							
to 30℃,fc=1 G	Hz)						
10 kHz < -80 dBc/Hz							
	< -100 dBc/Hz						
Hz to 1 MHz, ir	ו 1-3-5-10 sequence						
< 5% typical							
<5 typical							
10 Hz to 1 MHz, in 1-3-5-10 sequence							
DANL to +10 dBm,100 kHz to 10 MHz, Preamp Off							
DANL to +20 dBm,10 MHz to 1.5 GHz, Preamp Off							
-80 dBmto+30 dBm,0.01dB by step							
0 dB, nominal, 1	100 kHz to 1.5 GHz						
XSA805 (TG)							
XSA810 (TG) 0 to 40 dB,1 dB by step							
• •	•	$\mathbf{W} = \mathbf{V}\mathbf{B}\mathbf{W} = 100 \text{Hz}$, sample detector					
		-95 dBm (Typical), <-88 dBm					
1 MHz to 500 MHz							
		-140 dBm (Typical), <-130dBm					
. ,		-138 dBm (Typical),<-128 dBm					
100 kHz to 1 MHz		-135 dBm (Typical), <-128 dBm					
1 MHz to 500 MHz							
		-160 dBm (Typical),<-150 dBm					
(SA815(TG) 5	00 MHz to 1.5 GHz	-158 dBm (Typical),<-148 dBm					
	0 kHz 00 kHz MHz Hz to 1 MHz, ir 5% typical 5 typical 0 Hz to 1 MHz, ir 5% typical 0 Hz to 1 MHz, 0 Hz to 1 MHz, 0 ANL to +10 dBr 0 ANL to +20 dBr 30 dBmto+30 dB 0 dB, nominal, SA805 (TG) SA810 (TG) SA815 (TG) SA815 (TG) SA815 (TG) SA815 (TG) SA815 (TG) SA815 (TG) SA810 (TG) SA815(TG) SA815(TG) SA815(TG) SA815(TG) SA815(TG) SA815(TG)	2 KHz $< -80 \text{ dBc/Hz}$ 20 KHz $< -100 \text{ dBc/Hz}$ 20 KHz $< -115 \text{ dBc/Hz}$ 20 KHz $< -115 \text{ dBc/Hz}$ 20 KHz $< -115 \text{ dBc/Hz}$ 412 to 1 MHz , in 1-3-5-10 sequence 5% typical 5 typical 0 Hz to 1 MHz , in 1-3-5-10 sequence 0 Hz to 1 MHz , in 1-3-5-10 sequence 0 Hz to 1 MHz , in 1-3-5-10 sequence 0 Hz to 1 MHz , in 1-3-5-10 sequence $0 \text{ ANL to +10 dBm,100 kHz to 10 MHz}$ $0 \text{ ANL to +20 dBm,10 MHz to 1.5 GHz}$ $0 \text{ dB, nominal, 100 kHz to 1.5 GHz}$ $0 \text{ dB, nominal, 100 kHz to 1.5 GHz}$ 0 AB305 (TG) $0 \text{ to 40 dB,1 dB by step}$ $0 \text{ to 30°C, input impedance = 50 } \Omega$ 0 kHz to 1 MHz $MHz \text{ to 500 MHz}$ 0 SA810(TG) 500 MHz to 1 GHz 0 kHz to 1 MHz $MHz \text{ to 500 MHz}$ 0 kHz to 1 MHz $MHz \text{ to 500 MHz}$ 0 kHz to 1 MHz $MHz \text{ to 500 MHz}$ 0 kHz to 1 MHz $MHz \text{ to 500 MHz}$ 0 kHz to 1 MHz $MHz \text{ to 500 MHz}$ 0 kHz to 1 0 Hz					

Preamp Off (fc≥9kHz)	<0.7 dB							
Preamp On								
(fc≥50 MHz)	<1.0 dB							
Difference and Accura	асу							
	fc = 50 MHz, pea	ak detect	or, preamp	lifier off, at	tenuation =	10 dB,	input si	igna
Uncertainty	level = -10 dBm, 20°C to 30°C < 0.4 dB							
Tracking Generator (c	optional)							
Frequency Range	XSA805 (TG) 100 kHz to 500.009 MHz							
	XSA810 (TG) 100 kHz to 1.000009 GHz							
	XSA815 (TG) 100 kHz to 1.500009 GHz							
Output power	-40 dBm to 0 dBm							
level range								
Output level resolution	1 dB							
Output flatness	Relative to 50 MHz							
	± 3 dB		1					
Tracking generator spurious	Harmonic spurious		-30 dBc	(Tracking	generator	output	power	-10
			dBm)					
			-40 dBc	(Tracking	generator	output	power	-10
	Non-harmonic sp	dBm)						
Tracking generator to			I					
input terminal isolation	-60 dB (Tracking generator output power 0 dBm)							
USB								
USB Host								
Connector	A Plug							
Protocol	USB 2.0							
USB Device	000 2.0							
Connector	B Plug							
Protocol	USB 2.0							
Display	000 2.0							
Туре	TFT LCD							
Resolution	1280*800							
Size	9 inches							
Color	65536							
Remote Control	00000							
LAN	10/100Base,RJ-4	15						
HDMI	Connector A Plug							
	Protocol Version 1.4							
Appearance								
Dimensions	375 mm (W) × 18	35 mm (H) × 120 mn	n (D)				
Weight	Approx. 3.7 kg (without package)							

